Files
mcp-deep-research/README.md
Krishna Kumar 9a6ac3fd2f Add OpenAI Deep Research MCP server
- FastMCP server with deep_research and deep_research_info tools
- OpenAI Responses API integration with background polling
- Configurable model via DEEP_RESEARCH_MODEL env var
- Default: o4-mini-deep-research (faster/cheaper)
- Optional FastAPI backend for standalone use
- Tested successfully: 80s query, 20 web searches, 4 citations
2025-12-30 16:00:37 -06:00

137 lines
3.1 KiB
Markdown

# MCP Deep Research
MCP Server for OpenAI Deep Research API - comprehensive web research with citations.
## Overview
This MCP server provides access to OpenAI's Deep Research models, which can:
- Perform extensive web searches
- Analyze data with code execution
- Synthesize findings into structured reports
- Provide citations for all sources
## Installation
```bash
cd mcp-deep-research
uv sync
```
## Configuration
### Environment Variables
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `OPENAI_API_KEY` | Yes | - | Your OpenAI API key |
| `DEEP_RESEARCH_MODEL` | No | `o4-mini-deep-research-2025-06-26` | Research model to use |
| `DEEP_RESEARCH_POLL_INTERVAL` | No | `5.0` | Seconds between status polls |
### Available Models
- `o4-mini-deep-research-2025-06-26` - Faster, cheaper (DEFAULT)
- `o3-deep-research-2025-06-26` - More thorough, ~$1+ per query
## Usage
### As MCP Server (stdio)
```bash
OPENAI_API_KEY=your-key uv run python -m mcp_server.server
```
### Standalone FastAPI (optional)
```bash
OPENAI_API_KEY=your-key uv run python -m backend.main
```
Runs on `http://localhost:8002` by default.
## MCP Tools
### `deep_research`
Performs comprehensive web research on a query.
**Parameters:**
- `query` (required): The research question or topic
- `system_prompt` (optional): Instructions to guide research focus
- `include_code_analysis` (optional, default: true): Allow code execution for data analysis
- `max_wait_minutes` (optional, default: 15): Maximum time to wait
**Returns:**
```json
{
"status": "completed",
"model": "o4-mini-deep-research-2025-06-26",
"report_text": "# Research Report\n\n...",
"citations": [
{"title": "Source Title", "url": "https://..."}
],
"web_searches": 12,
"code_executions": 2,
"elapsed_time": 180.5
}
```
### `deep_research_info`
Returns configuration information about the deep research setup.
## Integration with CouncilApp
The server is configured in `councilapp.backend/packages/server/src/server/session.ts`:
```typescript
"deep-research": {
command: "/bin/bash",
args: ["-c", `cd ${MCP_DEEP_RESEARCH_PATH} && uv run python -m mcp_server.server`],
env: {
OPENAI_API_KEY: process.env.OPENAI_API_KEY,
DEEP_RESEARCH_MODEL: process.env.DEEP_RESEARCH_MODEL,
},
}
```
## Docker Configuration
Set these in your Docker environment or docker-compose.yml:
```yaml
environment:
- OPENAI_API_KEY=sk-...
- DEEP_RESEARCH_MODEL=o4-mini-deep-research-2025-06-26 # or o3-deep-research-2025-06-26
```
## Pricing
Deep research costs vary based on:
- Number of web searches performed
- Code interpreter usage
- Token consumption
Approximate costs:
- `o4-mini`: Lower cost, faster responses
- `o3`: ~$1+ per complex query with many web searches
## Test Results (2024-12-30)
Successfully tested with query: "What is the current population of Tokyo in 2024?"
```
Status: completed
Model: o4-mini-deep-research-2025-06-26
Elapsed time: 80.5s
Web searches: 20
Citations: 4
Report excerpt:
# Tokyo Population (2024)
As of late 2024, the official population of Tokyo Metropolis is about 14.2 million people.
```
## License
MIT