# MCP Deep Research MCP Server for OpenAI Deep Research API - comprehensive web research with citations. ## Overview This MCP server provides access to OpenAI's Deep Research models, which can: - Perform extensive web searches - Analyze data with code execution - Synthesize findings into structured reports - Provide citations for all sources ## Installation ```bash cd mcp-deep-research uv sync ``` ## Configuration ### Environment Variables | Variable | Required | Default | Description | |----------|----------|---------|-------------| | `OPENAI_API_KEY` | Yes | - | Your OpenAI API key | | `DEEP_RESEARCH_MODEL` | No | `o4-mini-deep-research-2025-06-26` | Research model to use | | `DEEP_RESEARCH_POLL_INTERVAL` | No | `5.0` | Seconds between status polls | ### Available Models - `o4-mini-deep-research-2025-06-26` - Faster, cheaper (DEFAULT) - `o3-deep-research-2025-06-26` - More thorough, ~$1+ per query ## Usage ### As MCP Server (stdio) ```bash OPENAI_API_KEY=your-key uv run python -m mcp_server.server ``` ### Standalone FastAPI (optional) ```bash OPENAI_API_KEY=your-key uv run python -m backend.main ``` Runs on `http://localhost:8002` by default. ## MCP Tools ### `deep_research` Performs comprehensive web research on a query. **Parameters:** - `query` (required): The research question or topic - `system_prompt` (optional): Instructions to guide research focus - `include_code_analysis` (optional, default: true): Allow code execution for data analysis - `max_wait_minutes` (optional, default: 15): Maximum time to wait **Returns:** ```json { "status": "completed", "model": "o4-mini-deep-research-2025-06-26", "report_text": "# Research Report\n\n...", "citations": [ {"title": "Source Title", "url": "https://..."} ], "web_searches": 12, "code_executions": 2, "elapsed_time": 180.5 } ``` ### `deep_research_info` Returns configuration information about the deep research setup. ## Integration with CouncilApp The server is configured in `councilapp.backend/packages/server/src/server/session.ts`: ```typescript "deep-research": { command: "/bin/bash", args: ["-c", `cd ${MCP_DEEP_RESEARCH_PATH} && uv run python -m mcp_server.server`], env: { OPENAI_API_KEY: process.env.OPENAI_API_KEY, DEEP_RESEARCH_MODEL: process.env.DEEP_RESEARCH_MODEL, }, } ``` ## Docker Configuration Set these in your Docker environment or docker-compose.yml: ```yaml environment: - OPENAI_API_KEY=sk-... - DEEP_RESEARCH_MODEL=o4-mini-deep-research-2025-06-26 # or o3-deep-research-2025-06-26 ``` ## Pricing Deep research costs vary based on: - Number of web searches performed - Code interpreter usage - Token consumption Approximate costs: - `o4-mini`: Lower cost, faster responses - `o3`: ~$1+ per complex query with many web searches ## Test Results (2024-12-30) Successfully tested with query: "What is the current population of Tokyo in 2024?" ``` Status: completed Model: o4-mini-deep-research-2025-06-26 Elapsed time: 80.5s Web searches: 20 Citations: 4 Report excerpt: # Tokyo Population (2024) As of late 2024, the official population of Tokyo Metropolis is about 14.2 million people. ``` ## License MIT