Add main tool handler files

This commit is contained in:
Kaustabh Ganguly
2025-03-26 22:21:35 +05:30
parent 9ddbf4e56c
commit 9bf86febe4
6 changed files with 591 additions and 0 deletions

View File

@@ -0,0 +1,116 @@
import path from 'path';
import { promises as fs } from 'fs';
import sharp from 'sharp';
import { McpError } from '@modelcontextprotocol/sdk/types.js';
import OpenAI from 'openai';
export interface AnalyzeImageToolRequest {
image_path: string;
question?: string;
model?: string;
}
export async function handleAnalyzeImage(
request: { params: { arguments: AnalyzeImageToolRequest } },
openai: OpenAI,
defaultModel?: string
) {
const args = request.params.arguments;
try {
// Validate image path
const imagePath = args.image_path;
if (!path.isAbsolute(imagePath)) {
throw new McpError('InvalidParams', 'Image path must be absolute');
}
// Read image file
const imageBuffer = await fs.readFile(imagePath);
console.error(`Successfully read image buffer of size: ${imageBuffer.length}`);
// Get image metadata
const metadata = await sharp(imageBuffer).metadata();
console.error('Image metadata:', metadata);
// Calculate dimensions to keep base64 size reasonable
const MAX_DIMENSION = 800; // Larger than original example for better quality
const JPEG_QUALITY = 80; // Higher quality
let resizedBuffer = imageBuffer;
if (metadata.width && metadata.height) {
const largerDimension = Math.max(metadata.width, metadata.height);
if (largerDimension > MAX_DIMENSION) {
const resizeOptions = metadata.width > metadata.height
? { width: MAX_DIMENSION }
: { height: MAX_DIMENSION };
resizedBuffer = await sharp(imageBuffer)
.resize(resizeOptions)
.jpeg({ quality: JPEG_QUALITY })
.toBuffer();
} else {
resizedBuffer = await sharp(imageBuffer)
.jpeg({ quality: JPEG_QUALITY })
.toBuffer();
}
}
// Convert to base64
const base64Image = resizedBuffer.toString('base64');
// Select model
const model = args.model || defaultModel || 'anthropic/claude-3.5-sonnet';
// Prepare message with image
const messages = [
{
role: 'user',
content: [
{
type: 'text',
text: args.question || "What's in this image?"
},
{
type: 'image_url',
image_url: {
url: `data:image/jpeg;base64,${base64Image}`
}
}
]
}
];
console.error('Sending request to OpenRouter...');
// Call OpenRouter API
const completion = await openai.chat.completions.create({
model,
messages,
});
return {
content: [
{
type: 'text',
text: completion.choices[0].message.content || '',
},
],
};
} catch (error) {
console.error('Error analyzing image:', error);
if (error instanceof McpError) {
throw error;
}
return {
content: [
{
type: 'text',
text: `Error analyzing image: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}

View File

@@ -0,0 +1,135 @@
import OpenAI from 'openai';
import { ChatCompletionMessageParam } from 'openai/resources/chat/completions.js';
// Maximum context tokens
const MAX_CONTEXT_TOKENS = 200000;
export interface ChatCompletionToolRequest {
model?: string;
messages: ChatCompletionMessageParam[];
temperature?: number;
}
// Utility function to estimate token count (simplified)
function estimateTokenCount(text: string): number {
// Rough approximation: 4 characters per token
return Math.ceil(text.length / 4);
}
// Truncate messages to fit within the context window
function truncateMessagesToFit(
messages: ChatCompletionMessageParam[],
maxTokens: number
): ChatCompletionMessageParam[] {
const truncated: ChatCompletionMessageParam[] = [];
let currentTokenCount = 0;
// Always include system message first if present
if (messages[0]?.role === 'system') {
truncated.push(messages[0]);
currentTokenCount += estimateTokenCount(messages[0].content as string);
}
// Add messages from the end, respecting the token limit
for (let i = messages.length - 1; i >= 0; i--) {
const message = messages[i];
// Skip if it's the system message we've already added
if (i === 0 && message.role === 'system') continue;
// For string content, estimate tokens directly
if (typeof message.content === 'string') {
const messageTokens = estimateTokenCount(message.content);
if (currentTokenCount + messageTokens > maxTokens) break;
truncated.unshift(message);
currentTokenCount += messageTokens;
}
// For multimodal content (array), estimate tokens for text content
else if (Array.isArray(message.content)) {
let messageTokens = 0;
for (const part of message.content) {
if (part.type === 'text' && part.text) {
messageTokens += estimateTokenCount(part.text);
} else if (part.type === 'image_url') {
// Add a token cost estimate for images - this is a simplification
// Actual image token costs depend on resolution and model
messageTokens += 1000;
}
}
if (currentTokenCount + messageTokens > maxTokens) break;
truncated.unshift(message);
currentTokenCount += messageTokens;
}
}
return truncated;
}
export async function handleChatCompletion(
request: { params: { arguments: ChatCompletionToolRequest } },
openai: OpenAI,
defaultModel?: string
) {
const args = request.params.arguments;
// Validate model selection
const model = args.model || defaultModel;
if (!model) {
return {
content: [
{
type: 'text',
text: 'No model specified and no default model configured in MCP settings. Please specify a model or set OPENROUTER_DEFAULT_MODEL in the MCP configuration.',
},
],
isError: true,
};
}
// Validate message array
if (args.messages.length === 0) {
return {
content: [
{
type: 'text',
text: 'Messages array cannot be empty. At least one message is required.',
},
],
isError: true,
};
}
try {
// Truncate messages to fit within context window
const truncatedMessages = truncateMessagesToFit(args.messages, MAX_CONTEXT_TOKENS);
const completion = await openai.chat.completions.create({
model,
messages: truncatedMessages,
temperature: args.temperature ?? 1,
});
return {
content: [
{
type: 'text',
text: completion.choices[0].message.content || '',
},
],
};
} catch (error) {
if (error instanceof Error) {
return {
content: [
{
type: 'text',
text: `OpenRouter API error: ${error.message}`,
},
],
isError: true,
};
}
throw error;
}
}

View File

@@ -0,0 +1,54 @@
import { McpError } from '@modelcontextprotocol/sdk/types.js';
import { ModelCache } from '../model-cache.js';
export interface GetModelInfoToolRequest {
model: string;
}
export async function handleGetModelInfo(
request: { params: { arguments: GetModelInfoToolRequest } },
modelCache: ModelCache
) {
const args = request.params.arguments;
try {
if (!modelCache.isCacheValid()) {
return {
content: [
{
type: 'text',
text: 'Model cache is empty or expired. Please call search_models first to populate the cache.',
},
],
isError: true,
};
}
const model = modelCache.getModel(args.model);
if (!model) {
throw new McpError('NotFound', `Model '${args.model}' not found`);
}
return {
content: [
{
type: 'text',
text: JSON.stringify(model, null, 2),
},
],
};
} catch (error) {
if (error instanceof Error) {
return {
content: [
{
type: 'text',
text: `Error retrieving model info: ${error.message}`,
},
],
isError: true,
};
}
throw error;
}
}

View File

@@ -0,0 +1,168 @@
import fetch from 'node-fetch';
import sharp from 'sharp';
import { McpError } from '@modelcontextprotocol/sdk/types.js';
import OpenAI from 'openai';
export interface MultiImageAnalysisToolRequest {
images: Array<{
url: string;
alt?: string;
}>;
prompt: string;
markdown_response?: boolean;
model?: string;
}
async function fetchImageAsBuffer(url: string): Promise<Buffer> {
try {
// Handle data URLs
if (url.startsWith('data:')) {
const matches = url.match(/^data:([A-Za-z-+\/]+);base64,(.+)$/);
if (!matches || matches.length !== 3) {
throw new Error('Invalid data URL');
}
return Buffer.from(matches[2], 'base64');
}
// Handle file URLs
if (url.startsWith('file://')) {
const filePath = url.replace('file://', '');
const fs = await import('fs/promises');
return await fs.readFile(filePath);
}
// Handle http/https URLs
const response = await fetch(url);
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
return Buffer.from(await response.arrayBuffer());
} catch (error) {
console.error(`Error fetching image from ${url}:`, error);
throw error;
}
}
async function processImage(buffer: Buffer): Promise<string> {
try {
// Get image metadata
const metadata = await sharp(buffer).metadata();
// Calculate dimensions to keep base64 size reasonable
const MAX_DIMENSION = 800;
const JPEG_QUALITY = 80;
if (metadata.width && metadata.height) {
const largerDimension = Math.max(metadata.width, metadata.height);
if (largerDimension > MAX_DIMENSION) {
const resizeOptions = metadata.width > metadata.height
? { width: MAX_DIMENSION }
: { height: MAX_DIMENSION };
const resizedBuffer = await sharp(buffer)
.resize(resizeOptions)
.jpeg({ quality: JPEG_QUALITY })
.toBuffer();
return resizedBuffer.toString('base64');
}
}
// If no resizing needed, just convert to JPEG
const jpegBuffer = await sharp(buffer)
.jpeg({ quality: JPEG_QUALITY })
.toBuffer();
return jpegBuffer.toString('base64');
} catch (error) {
console.error('Error processing image:', error);
throw error;
}
}
export async function handleMultiImageAnalysis(
request: { params: { arguments: MultiImageAnalysisToolRequest } },
openai: OpenAI,
defaultModel?: string
) {
const args = request.params.arguments;
try {
// Validate inputs
if (!args.images || args.images.length === 0) {
throw new McpError('InvalidParams', 'At least one image is required');
}
if (!args.prompt) {
throw new McpError('InvalidParams', 'A prompt is required');
}
// Prepare content array for the message
const content: Array<any> = [{
type: 'text',
text: args.prompt
}];
// Process each image
for (const image of args.images) {
try {
// Fetch and process the image
const imageBuffer = await fetchImageAsBuffer(image.url);
const base64Image = await processImage(imageBuffer);
// Add to content
content.push({
type: 'image_url',
image_url: {
url: `data:image/jpeg;base64,${base64Image}`
}
});
} catch (error) {
console.error(`Error processing image ${image.url}:`, error);
// Continue with other images if one fails
}
}
// If no images were successfully processed
if (content.length === 1) {
throw new Error('Failed to process any of the provided images');
}
// Select model
const model = args.model || defaultModel || 'anthropic/claude-3.5-sonnet';
// Make the API call
const completion = await openai.chat.completions.create({
model,
messages: [{
role: 'user',
content
}]
});
return {
content: [
{
type: 'text',
text: completion.choices[0].message.content || '',
},
],
};
} catch (error) {
console.error('Error in multi-image analysis:', error);
if (error instanceof McpError) {
throw error;
}
return {
content: [
{
type: 'text',
text: `Error analyzing images: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}

View File

@@ -0,0 +1,68 @@
import { ModelCache } from '../model-cache.js';
import { OpenRouterAPIClient } from '../openrouter-api.js';
export interface SearchModelsToolRequest {
query?: string;
provider?: string;
minContextLength?: number;
maxContextLength?: number;
maxPromptPrice?: number;
maxCompletionPrice?: number;
capabilities?: {
functions?: boolean;
tools?: boolean;
vision?: boolean;
json_mode?: boolean;
};
limit?: number;
}
export async function handleSearchModels(
request: { params: { arguments: SearchModelsToolRequest } },
apiClient: OpenRouterAPIClient,
modelCache: ModelCache
) {
const args = request.params.arguments;
try {
// Refresh the cache if needed
if (!modelCache.isCacheValid()) {
const models = await apiClient.getModels();
modelCache.setModels(models);
}
// Search models based on criteria
const results = modelCache.searchModels({
query: args.query,
provider: args.provider,
minContextLength: args.minContextLength,
maxContextLength: args.maxContextLength,
maxPromptPrice: args.maxPromptPrice,
maxCompletionPrice: args.maxCompletionPrice,
capabilities: args.capabilities,
limit: args.limit || 10,
});
return {
content: [
{
type: 'text',
text: JSON.stringify(results, null, 2),
},
],
};
} catch (error) {
if (error instanceof Error) {
return {
content: [
{
type: 'text',
text: `Error searching models: ${error.message}`,
},
],
isError: true,
};
}
throw error;
}
}

View File

@@ -0,0 +1,50 @@
import { ModelCache } from '../model-cache.js';
export interface ValidateModelToolRequest {
model: string;
}
export async function handleValidateModel(
request: { params: { arguments: ValidateModelToolRequest } },
modelCache: ModelCache
) {
const args = request.params.arguments;
try {
if (!modelCache.isCacheValid()) {
return {
content: [
{
type: 'text',
text: 'Model cache is empty or expired. Please call search_models first to populate the cache.',
},
],
isError: true,
};
}
const isValid = modelCache.hasModel(args.model);
return {
content: [
{
type: 'text',
text: JSON.stringify({ valid: isValid }),
},
],
};
} catch (error) {
if (error instanceof Error) {
return {
content: [
{
type: 'text',
text: `Error validating model: ${error.message}`,
},
],
isError: true,
};
}
throw error;
}
}