Add main tool handler files
This commit is contained in:
116
src/tool-handlers/analyze-image.ts
Normal file
116
src/tool-handlers/analyze-image.ts
Normal file
@@ -0,0 +1,116 @@
|
||||
import path from 'path';
|
||||
import { promises as fs } from 'fs';
|
||||
import sharp from 'sharp';
|
||||
import { McpError } from '@modelcontextprotocol/sdk/types.js';
|
||||
import OpenAI from 'openai';
|
||||
|
||||
export interface AnalyzeImageToolRequest {
|
||||
image_path: string;
|
||||
question?: string;
|
||||
model?: string;
|
||||
}
|
||||
|
||||
export async function handleAnalyzeImage(
|
||||
request: { params: { arguments: AnalyzeImageToolRequest } },
|
||||
openai: OpenAI,
|
||||
defaultModel?: string
|
||||
) {
|
||||
const args = request.params.arguments;
|
||||
|
||||
try {
|
||||
// Validate image path
|
||||
const imagePath = args.image_path;
|
||||
if (!path.isAbsolute(imagePath)) {
|
||||
throw new McpError('InvalidParams', 'Image path must be absolute');
|
||||
}
|
||||
|
||||
// Read image file
|
||||
const imageBuffer = await fs.readFile(imagePath);
|
||||
console.error(`Successfully read image buffer of size: ${imageBuffer.length}`);
|
||||
|
||||
// Get image metadata
|
||||
const metadata = await sharp(imageBuffer).metadata();
|
||||
console.error('Image metadata:', metadata);
|
||||
|
||||
// Calculate dimensions to keep base64 size reasonable
|
||||
const MAX_DIMENSION = 800; // Larger than original example for better quality
|
||||
const JPEG_QUALITY = 80; // Higher quality
|
||||
let resizedBuffer = imageBuffer;
|
||||
|
||||
if (metadata.width && metadata.height) {
|
||||
const largerDimension = Math.max(metadata.width, metadata.height);
|
||||
if (largerDimension > MAX_DIMENSION) {
|
||||
const resizeOptions = metadata.width > metadata.height
|
||||
? { width: MAX_DIMENSION }
|
||||
: { height: MAX_DIMENSION };
|
||||
|
||||
resizedBuffer = await sharp(imageBuffer)
|
||||
.resize(resizeOptions)
|
||||
.jpeg({ quality: JPEG_QUALITY })
|
||||
.toBuffer();
|
||||
} else {
|
||||
resizedBuffer = await sharp(imageBuffer)
|
||||
.jpeg({ quality: JPEG_QUALITY })
|
||||
.toBuffer();
|
||||
}
|
||||
}
|
||||
|
||||
// Convert to base64
|
||||
const base64Image = resizedBuffer.toString('base64');
|
||||
|
||||
// Select model
|
||||
const model = args.model || defaultModel || 'anthropic/claude-3.5-sonnet';
|
||||
|
||||
// Prepare message with image
|
||||
const messages = [
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: args.question || "What's in this image?"
|
||||
},
|
||||
{
|
||||
type: 'image_url',
|
||||
image_url: {
|
||||
url: `data:image/jpeg;base64,${base64Image}`
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
];
|
||||
|
||||
console.error('Sending request to OpenRouter...');
|
||||
|
||||
// Call OpenRouter API
|
||||
const completion = await openai.chat.completions.create({
|
||||
model,
|
||||
messages,
|
||||
});
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: completion.choices[0].message.content || '',
|
||||
},
|
||||
],
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('Error analyzing image:', error);
|
||||
|
||||
if (error instanceof McpError) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: `Error analyzing image: ${error instanceof Error ? error.message : String(error)}`,
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
}
|
||||
135
src/tool-handlers/chat-completion.ts
Normal file
135
src/tool-handlers/chat-completion.ts
Normal file
@@ -0,0 +1,135 @@
|
||||
import OpenAI from 'openai';
|
||||
import { ChatCompletionMessageParam } from 'openai/resources/chat/completions.js';
|
||||
|
||||
// Maximum context tokens
|
||||
const MAX_CONTEXT_TOKENS = 200000;
|
||||
|
||||
export interface ChatCompletionToolRequest {
|
||||
model?: string;
|
||||
messages: ChatCompletionMessageParam[];
|
||||
temperature?: number;
|
||||
}
|
||||
|
||||
// Utility function to estimate token count (simplified)
|
||||
function estimateTokenCount(text: string): number {
|
||||
// Rough approximation: 4 characters per token
|
||||
return Math.ceil(text.length / 4);
|
||||
}
|
||||
|
||||
// Truncate messages to fit within the context window
|
||||
function truncateMessagesToFit(
|
||||
messages: ChatCompletionMessageParam[],
|
||||
maxTokens: number
|
||||
): ChatCompletionMessageParam[] {
|
||||
const truncated: ChatCompletionMessageParam[] = [];
|
||||
let currentTokenCount = 0;
|
||||
|
||||
// Always include system message first if present
|
||||
if (messages[0]?.role === 'system') {
|
||||
truncated.push(messages[0]);
|
||||
currentTokenCount += estimateTokenCount(messages[0].content as string);
|
||||
}
|
||||
|
||||
// Add messages from the end, respecting the token limit
|
||||
for (let i = messages.length - 1; i >= 0; i--) {
|
||||
const message = messages[i];
|
||||
|
||||
// Skip if it's the system message we've already added
|
||||
if (i === 0 && message.role === 'system') continue;
|
||||
|
||||
// For string content, estimate tokens directly
|
||||
if (typeof message.content === 'string') {
|
||||
const messageTokens = estimateTokenCount(message.content);
|
||||
if (currentTokenCount + messageTokens > maxTokens) break;
|
||||
truncated.unshift(message);
|
||||
currentTokenCount += messageTokens;
|
||||
}
|
||||
// For multimodal content (array), estimate tokens for text content
|
||||
else if (Array.isArray(message.content)) {
|
||||
let messageTokens = 0;
|
||||
for (const part of message.content) {
|
||||
if (part.type === 'text' && part.text) {
|
||||
messageTokens += estimateTokenCount(part.text);
|
||||
} else if (part.type === 'image_url') {
|
||||
// Add a token cost estimate for images - this is a simplification
|
||||
// Actual image token costs depend on resolution and model
|
||||
messageTokens += 1000;
|
||||
}
|
||||
}
|
||||
|
||||
if (currentTokenCount + messageTokens > maxTokens) break;
|
||||
truncated.unshift(message);
|
||||
currentTokenCount += messageTokens;
|
||||
}
|
||||
}
|
||||
|
||||
return truncated;
|
||||
}
|
||||
|
||||
export async function handleChatCompletion(
|
||||
request: { params: { arguments: ChatCompletionToolRequest } },
|
||||
openai: OpenAI,
|
||||
defaultModel?: string
|
||||
) {
|
||||
const args = request.params.arguments;
|
||||
|
||||
// Validate model selection
|
||||
const model = args.model || defaultModel;
|
||||
if (!model) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: 'No model specified and no default model configured in MCP settings. Please specify a model or set OPENROUTER_DEFAULT_MODEL in the MCP configuration.',
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
|
||||
// Validate message array
|
||||
if (args.messages.length === 0) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: 'Messages array cannot be empty. At least one message is required.',
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
|
||||
try {
|
||||
// Truncate messages to fit within context window
|
||||
const truncatedMessages = truncateMessagesToFit(args.messages, MAX_CONTEXT_TOKENS);
|
||||
|
||||
const completion = await openai.chat.completions.create({
|
||||
model,
|
||||
messages: truncatedMessages,
|
||||
temperature: args.temperature ?? 1,
|
||||
});
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: completion.choices[0].message.content || '',
|
||||
},
|
||||
],
|
||||
};
|
||||
} catch (error) {
|
||||
if (error instanceof Error) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: `OpenRouter API error: ${error.message}`,
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
54
src/tool-handlers/get-model-info.ts
Normal file
54
src/tool-handlers/get-model-info.ts
Normal file
@@ -0,0 +1,54 @@
|
||||
import { McpError } from '@modelcontextprotocol/sdk/types.js';
|
||||
import { ModelCache } from '../model-cache.js';
|
||||
|
||||
export interface GetModelInfoToolRequest {
|
||||
model: string;
|
||||
}
|
||||
|
||||
export async function handleGetModelInfo(
|
||||
request: { params: { arguments: GetModelInfoToolRequest } },
|
||||
modelCache: ModelCache
|
||||
) {
|
||||
const args = request.params.arguments;
|
||||
|
||||
try {
|
||||
if (!modelCache.isCacheValid()) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: 'Model cache is empty or expired. Please call search_models first to populate the cache.',
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
|
||||
const model = modelCache.getModel(args.model);
|
||||
if (!model) {
|
||||
throw new McpError('NotFound', `Model '${args.model}' not found`);
|
||||
}
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: JSON.stringify(model, null, 2),
|
||||
},
|
||||
],
|
||||
};
|
||||
} catch (error) {
|
||||
if (error instanceof Error) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: `Error retrieving model info: ${error.message}`,
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
168
src/tool-handlers/multi-image-analysis.ts
Normal file
168
src/tool-handlers/multi-image-analysis.ts
Normal file
@@ -0,0 +1,168 @@
|
||||
import fetch from 'node-fetch';
|
||||
import sharp from 'sharp';
|
||||
import { McpError } from '@modelcontextprotocol/sdk/types.js';
|
||||
import OpenAI from 'openai';
|
||||
|
||||
export interface MultiImageAnalysisToolRequest {
|
||||
images: Array<{
|
||||
url: string;
|
||||
alt?: string;
|
||||
}>;
|
||||
prompt: string;
|
||||
markdown_response?: boolean;
|
||||
model?: string;
|
||||
}
|
||||
|
||||
async function fetchImageAsBuffer(url: string): Promise<Buffer> {
|
||||
try {
|
||||
// Handle data URLs
|
||||
if (url.startsWith('data:')) {
|
||||
const matches = url.match(/^data:([A-Za-z-+\/]+);base64,(.+)$/);
|
||||
if (!matches || matches.length !== 3) {
|
||||
throw new Error('Invalid data URL');
|
||||
}
|
||||
return Buffer.from(matches[2], 'base64');
|
||||
}
|
||||
|
||||
// Handle file URLs
|
||||
if (url.startsWith('file://')) {
|
||||
const filePath = url.replace('file://', '');
|
||||
const fs = await import('fs/promises');
|
||||
return await fs.readFile(filePath);
|
||||
}
|
||||
|
||||
// Handle http/https URLs
|
||||
const response = await fetch(url);
|
||||
if (!response.ok) {
|
||||
throw new Error(`HTTP error! status: ${response.status}`);
|
||||
}
|
||||
return Buffer.from(await response.arrayBuffer());
|
||||
} catch (error) {
|
||||
console.error(`Error fetching image from ${url}:`, error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
async function processImage(buffer: Buffer): Promise<string> {
|
||||
try {
|
||||
// Get image metadata
|
||||
const metadata = await sharp(buffer).metadata();
|
||||
|
||||
// Calculate dimensions to keep base64 size reasonable
|
||||
const MAX_DIMENSION = 800;
|
||||
const JPEG_QUALITY = 80;
|
||||
|
||||
if (metadata.width && metadata.height) {
|
||||
const largerDimension = Math.max(metadata.width, metadata.height);
|
||||
if (largerDimension > MAX_DIMENSION) {
|
||||
const resizeOptions = metadata.width > metadata.height
|
||||
? { width: MAX_DIMENSION }
|
||||
: { height: MAX_DIMENSION };
|
||||
|
||||
const resizedBuffer = await sharp(buffer)
|
||||
.resize(resizeOptions)
|
||||
.jpeg({ quality: JPEG_QUALITY })
|
||||
.toBuffer();
|
||||
|
||||
return resizedBuffer.toString('base64');
|
||||
}
|
||||
}
|
||||
|
||||
// If no resizing needed, just convert to JPEG
|
||||
const jpegBuffer = await sharp(buffer)
|
||||
.jpeg({ quality: JPEG_QUALITY })
|
||||
.toBuffer();
|
||||
|
||||
return jpegBuffer.toString('base64');
|
||||
} catch (error) {
|
||||
console.error('Error processing image:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
export async function handleMultiImageAnalysis(
|
||||
request: { params: { arguments: MultiImageAnalysisToolRequest } },
|
||||
openai: OpenAI,
|
||||
defaultModel?: string
|
||||
) {
|
||||
const args = request.params.arguments;
|
||||
|
||||
try {
|
||||
// Validate inputs
|
||||
if (!args.images || args.images.length === 0) {
|
||||
throw new McpError('InvalidParams', 'At least one image is required');
|
||||
}
|
||||
|
||||
if (!args.prompt) {
|
||||
throw new McpError('InvalidParams', 'A prompt is required');
|
||||
}
|
||||
|
||||
// Prepare content array for the message
|
||||
const content: Array<any> = [{
|
||||
type: 'text',
|
||||
text: args.prompt
|
||||
}];
|
||||
|
||||
// Process each image
|
||||
for (const image of args.images) {
|
||||
try {
|
||||
// Fetch and process the image
|
||||
const imageBuffer = await fetchImageAsBuffer(image.url);
|
||||
const base64Image = await processImage(imageBuffer);
|
||||
|
||||
// Add to content
|
||||
content.push({
|
||||
type: 'image_url',
|
||||
image_url: {
|
||||
url: `data:image/jpeg;base64,${base64Image}`
|
||||
}
|
||||
});
|
||||
} catch (error) {
|
||||
console.error(`Error processing image ${image.url}:`, error);
|
||||
// Continue with other images if one fails
|
||||
}
|
||||
}
|
||||
|
||||
// If no images were successfully processed
|
||||
if (content.length === 1) {
|
||||
throw new Error('Failed to process any of the provided images');
|
||||
}
|
||||
|
||||
// Select model
|
||||
const model = args.model || defaultModel || 'anthropic/claude-3.5-sonnet';
|
||||
|
||||
// Make the API call
|
||||
const completion = await openai.chat.completions.create({
|
||||
model,
|
||||
messages: [{
|
||||
role: 'user',
|
||||
content
|
||||
}]
|
||||
});
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: completion.choices[0].message.content || '',
|
||||
},
|
||||
],
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('Error in multi-image analysis:', error);
|
||||
|
||||
if (error instanceof McpError) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: `Error analyzing images: ${error instanceof Error ? error.message : String(error)}`,
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
}
|
||||
68
src/tool-handlers/search-models.ts
Normal file
68
src/tool-handlers/search-models.ts
Normal file
@@ -0,0 +1,68 @@
|
||||
import { ModelCache } from '../model-cache.js';
|
||||
import { OpenRouterAPIClient } from '../openrouter-api.js';
|
||||
|
||||
export interface SearchModelsToolRequest {
|
||||
query?: string;
|
||||
provider?: string;
|
||||
minContextLength?: number;
|
||||
maxContextLength?: number;
|
||||
maxPromptPrice?: number;
|
||||
maxCompletionPrice?: number;
|
||||
capabilities?: {
|
||||
functions?: boolean;
|
||||
tools?: boolean;
|
||||
vision?: boolean;
|
||||
json_mode?: boolean;
|
||||
};
|
||||
limit?: number;
|
||||
}
|
||||
|
||||
export async function handleSearchModels(
|
||||
request: { params: { arguments: SearchModelsToolRequest } },
|
||||
apiClient: OpenRouterAPIClient,
|
||||
modelCache: ModelCache
|
||||
) {
|
||||
const args = request.params.arguments;
|
||||
|
||||
try {
|
||||
// Refresh the cache if needed
|
||||
if (!modelCache.isCacheValid()) {
|
||||
const models = await apiClient.getModels();
|
||||
modelCache.setModels(models);
|
||||
}
|
||||
|
||||
// Search models based on criteria
|
||||
const results = modelCache.searchModels({
|
||||
query: args.query,
|
||||
provider: args.provider,
|
||||
minContextLength: args.minContextLength,
|
||||
maxContextLength: args.maxContextLength,
|
||||
maxPromptPrice: args.maxPromptPrice,
|
||||
maxCompletionPrice: args.maxCompletionPrice,
|
||||
capabilities: args.capabilities,
|
||||
limit: args.limit || 10,
|
||||
});
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: JSON.stringify(results, null, 2),
|
||||
},
|
||||
],
|
||||
};
|
||||
} catch (error) {
|
||||
if (error instanceof Error) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: `Error searching models: ${error.message}`,
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
50
src/tool-handlers/validate-model.ts
Normal file
50
src/tool-handlers/validate-model.ts
Normal file
@@ -0,0 +1,50 @@
|
||||
import { ModelCache } from '../model-cache.js';
|
||||
|
||||
export interface ValidateModelToolRequest {
|
||||
model: string;
|
||||
}
|
||||
|
||||
export async function handleValidateModel(
|
||||
request: { params: { arguments: ValidateModelToolRequest } },
|
||||
modelCache: ModelCache
|
||||
) {
|
||||
const args = request.params.arguments;
|
||||
|
||||
try {
|
||||
if (!modelCache.isCacheValid()) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: 'Model cache is empty or expired. Please call search_models first to populate the cache.',
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
|
||||
const isValid = modelCache.hasModel(args.model);
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: JSON.stringify({ valid: isValid }),
|
||||
},
|
||||
],
|
||||
};
|
||||
} catch (error) {
|
||||
if (error instanceof Error) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: `Error validating model: ${error.message}`,
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user