169 lines
4.5 KiB
TypeScript
169 lines
4.5 KiB
TypeScript
import fetch from 'node-fetch';
|
|
import sharp from 'sharp';
|
|
import { McpError, ErrorCode } from '@modelcontextprotocol/sdk/types.js';
|
|
import OpenAI from 'openai';
|
|
|
|
export interface MultiImageAnalysisToolRequest {
|
|
images: Array<{
|
|
url: string;
|
|
alt?: string;
|
|
}>;
|
|
prompt: string;
|
|
markdown_response?: boolean;
|
|
model?: string;
|
|
}
|
|
|
|
async function fetchImageAsBuffer(url: string): Promise<Buffer> {
|
|
try {
|
|
// Handle data URLs
|
|
if (url.startsWith('data:')) {
|
|
const matches = url.match(/^data:([A-Za-z-+\/]+);base64,(.+)$/);
|
|
if (!matches || matches.length !== 3) {
|
|
throw new Error('Invalid data URL');
|
|
}
|
|
return Buffer.from(matches[2], 'base64');
|
|
}
|
|
|
|
// Handle file URLs
|
|
if (url.startsWith('file://')) {
|
|
const filePath = url.replace('file://', '');
|
|
const fs = await import('fs/promises');
|
|
return await fs.readFile(filePath);
|
|
}
|
|
|
|
// Handle http/https URLs
|
|
const response = await fetch(url);
|
|
if (!response.ok) {
|
|
throw new Error(`HTTP error! status: ${response.status}`);
|
|
}
|
|
return Buffer.from(await response.arrayBuffer());
|
|
} catch (error) {
|
|
console.error(`Error fetching image from ${url}:`, error);
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
async function processImage(buffer: Buffer): Promise<string> {
|
|
try {
|
|
// Get image metadata
|
|
const metadata = await sharp(buffer).metadata();
|
|
|
|
// Calculate dimensions to keep base64 size reasonable
|
|
const MAX_DIMENSION = 800;
|
|
const JPEG_QUALITY = 80;
|
|
|
|
if (metadata.width && metadata.height) {
|
|
const largerDimension = Math.max(metadata.width, metadata.height);
|
|
if (largerDimension > MAX_DIMENSION) {
|
|
const resizeOptions = metadata.width > metadata.height
|
|
? { width: MAX_DIMENSION }
|
|
: { height: MAX_DIMENSION };
|
|
|
|
const resizedBuffer = await sharp(buffer)
|
|
.resize(resizeOptions)
|
|
.jpeg({ quality: JPEG_QUALITY })
|
|
.toBuffer();
|
|
|
|
return resizedBuffer.toString('base64');
|
|
}
|
|
}
|
|
|
|
// If no resizing needed, just convert to JPEG
|
|
const jpegBuffer = await sharp(buffer)
|
|
.jpeg({ quality: JPEG_QUALITY })
|
|
.toBuffer();
|
|
|
|
return jpegBuffer.toString('base64');
|
|
} catch (error) {
|
|
console.error('Error processing image:', error);
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
export async function handleMultiImageAnalysis(
|
|
request: { params: { arguments: MultiImageAnalysisToolRequest } },
|
|
openai: OpenAI,
|
|
defaultModel?: string
|
|
) {
|
|
const args = request.params.arguments;
|
|
|
|
try {
|
|
// Validate inputs
|
|
if (!args.images || args.images.length === 0) {
|
|
throw new McpError(ErrorCode.InvalidParams, 'At least one image is required');
|
|
}
|
|
|
|
if (!args.prompt) {
|
|
throw new McpError(ErrorCode.InvalidParams, 'A prompt is required');
|
|
}
|
|
|
|
// Prepare content array for the message
|
|
const content: Array<any> = [{
|
|
type: 'text',
|
|
text: args.prompt
|
|
}];
|
|
|
|
// Process each image
|
|
for (const image of args.images) {
|
|
try {
|
|
// Fetch and process the image
|
|
const imageBuffer = await fetchImageAsBuffer(image.url);
|
|
const base64Image = await processImage(imageBuffer);
|
|
|
|
// Add to content
|
|
content.push({
|
|
type: 'image_url',
|
|
image_url: {
|
|
url: `data:image/jpeg;base64,${base64Image}`
|
|
}
|
|
});
|
|
} catch (error) {
|
|
console.error(`Error processing image ${image.url}:`, error);
|
|
// Continue with other images if one fails
|
|
}
|
|
}
|
|
|
|
// If no images were successfully processed
|
|
if (content.length === 1) {
|
|
throw new Error('Failed to process any of the provided images');
|
|
}
|
|
|
|
// Select model
|
|
const model = args.model || defaultModel || 'anthropic/claude-3.5-sonnet';
|
|
|
|
// Make the API call
|
|
const completion = await openai.chat.completions.create({
|
|
model,
|
|
messages: [{
|
|
role: 'user',
|
|
content
|
|
}] as any
|
|
});
|
|
|
|
return {
|
|
content: [
|
|
{
|
|
type: 'text',
|
|
text: completion.choices[0].message.content || '',
|
|
},
|
|
],
|
|
};
|
|
} catch (error) {
|
|
console.error('Error in multi-image analysis:', error);
|
|
|
|
if (error instanceof McpError) {
|
|
throw error;
|
|
}
|
|
|
|
return {
|
|
content: [
|
|
{
|
|
type: 'text',
|
|
text: `Error analyzing images: ${error instanceof Error ? error.message : String(error)}`,
|
|
},
|
|
],
|
|
isError: true,
|
|
};
|
|
}
|
|
}
|