From 8512f031f7af064f5856b5654c8cf6e53fa71557 Mon Sep 17 00:00:00 2001 From: stabgan Date: Fri, 28 Mar 2025 12:41:57 +0530 Subject: [PATCH] fix: Improved base64 image handling and Windows compatibility --- .gitignore | 17 + convert_to_base64.html | 131 ++ convert_to_base64.py | 89 ++ encode_image.sh | 78 + full_base64.txt | 1594 ++++++++++++++++++++ lena_base64.txt | 1611 +++++++++++++++++++++ openrouter-image-python.py | 183 +++ openrouter-image-sdk.js | 247 ++++ package-lock.json | 4 +- package.json | 2 +- send_image_to_openrouter.js | 259 ++++ send_image_to_openrouter.ts | 160 ++ src/index.ts | 2 +- src/tool-handlers.ts | 4 +- src/tool-handlers/analyze-image.ts | 122 +- src/tool-handlers/multi-image-analysis.ts | 212 ++- start-server.js | 65 + test-openai-sdk.js | 155 ++ test.html | 1 + test.png | Bin 0 -> 38813 bytes test_base64.txt | 1 + test_mcp_server.js | 94 ++ 22 files changed, 4914 insertions(+), 117 deletions(-) create mode 100644 convert_to_base64.html create mode 100644 convert_to_base64.py create mode 100644 encode_image.sh create mode 100644 full_base64.txt create mode 100644 lena_base64.txt create mode 100644 openrouter-image-python.py create mode 100644 openrouter-image-sdk.js create mode 100644 send_image_to_openrouter.js create mode 100644 send_image_to_openrouter.ts create mode 100644 start-server.js create mode 100644 test-openai-sdk.js create mode 100644 test.html create mode 100644 test.png create mode 100644 test_base64.txt create mode 100644 test_mcp_server.js diff --git a/.gitignore b/.gitignore index 49b0e93..687c468 100644 --- a/.gitignore +++ b/.gitignore @@ -48,3 +48,20 @@ ehthumbs_vista.db # Testing coverage/ .nyc_output/ + +# Environment variables +.env +.env.local +.env.development.local +.env.test.local +.env.production.local + +# Runtime data +pids +*.pid +*.seed +*.pid.lock + +# OS files +.DS_Store +Thumbs.db diff --git a/convert_to_base64.html b/convert_to_base64.html new file mode 100644 index 0000000..3bc931d --- /dev/null +++ b/convert_to_base64.html @@ -0,0 +1,131 @@ + + + + + + Image to Base64 Converter + + + +

Image to Base64 Converter for MCP Testing

+

Use this tool to convert a local image to a base64 string that can be used with the MCP server's multi_image_analysis tool.

+ +
+
+
+ +
+ +
+

Image Preview:

+
+
+ +
+

Base64 String:

+ + +
+ +
+

How to use with MCP:

+
+
+{
+  "images": [
+    {
+      "url": "PASTE_BASE64_STRING_HERE"
+    }
+  ],
+  "prompt": "Please describe this image in detail. What does it show?",
+  "model": "qwen/qwen2.5-vl-32b-instruct:free"
+}
+
+
+
+
+ + + + \ No newline at end of file diff --git a/convert_to_base64.py b/convert_to_base64.py new file mode 100644 index 0000000..0e688f7 --- /dev/null +++ b/convert_to_base64.py @@ -0,0 +1,89 @@ +#!/usr/bin/env python3 +import base64 +import argparse +import os +import sys +from pathlib import Path + + +def convert_image_to_base64(image_path): + """Convert an image file to base64 encoding with data URI prefix""" + # Get file extension and determine mime type + file_ext = os.path.splitext(image_path)[1].lower() + mime_type = { + '.png': 'image/png', + '.jpg': 'image/jpeg', + '.jpeg': 'image/jpeg', + '.gif': 'image/gif', + '.webp': 'image/webp', + '.bmp': 'image/bmp' + }.get(file_ext, 'application/octet-stream') + + # Read binary data and encode to base64 + try: + with open(image_path, 'rb') as img_file: + img_data = img_file.read() + base64_data = base64.b64encode(img_data).decode('utf-8') + return f"data:{mime_type};base64,{base64_data}" + except Exception as e: + print(f"Error: {e}", file=sys.stderr) + return None + + +def save_base64_to_file(base64_data, output_path): + """Save base64 data to a file""" + try: + with open(output_path, 'w') as out_file: + out_file.write(base64_data) + print(f"Base64 data saved to {output_path}") + return True + except Exception as e: + print(f"Error saving file: {e}", file=sys.stderr) + return False + + +def main(): + parser = argparse.ArgumentParser(description='Convert image to base64 for MCP server testing') + parser.add_argument('image_path', help='Path to the image file') + parser.add_argument('-o', '--output', help='Output file path (if not provided, output to console)') + + args = parser.parse_args() + + # Check if file exists + image_path = Path(args.image_path) + if not image_path.exists(): + print(f"Error: File not found: {args.image_path}", file=sys.stderr) + return 1 + + # Convert image to base64 + base64_data = convert_image_to_base64(args.image_path) + if not base64_data: + return 1 + + # Output base64 data + if args.output: + success = save_base64_to_file(base64_data, args.output) + if not success: + return 1 + else: + print("\nBase64 Image Data:") + print(base64_data[:100] + "..." if len(base64_data) > 100 else base64_data) + print("\nTotal length:", len(base64_data)) + print("\nTo use with MCP server in multi_image_analysis:") + print(''' +{ + "images": [ + { + "url": "''' + base64_data[:20] + '... (full base64 string)" ' + ''' + } + ], + "prompt": "Please describe this image in detail. What does it show?", + "model": "qwen/qwen2.5-vl-32b-instruct:free" +} +''') + + return 0 + + +if __name__ == "__main__": + sys.exit(main()) \ No newline at end of file diff --git a/encode_image.sh b/encode_image.sh new file mode 100644 index 0000000..9f37ab7 --- /dev/null +++ b/encode_image.sh @@ -0,0 +1,78 @@ +#!/bin/bash + +# Check if an image file is provided +if [ $# -lt 1 ]; then + echo "Usage: $0 [output_file]" + echo "Example: $0 test.png base64_output.txt" + exit 1 +fi + +IMAGE_FILE="$1" +OUTPUT_FILE="${2:-}" # Use the second argument as output file, if provided + +# Check if the image file exists +if [ ! -f "$IMAGE_FILE" ]; then + echo "Error: Image file '$IMAGE_FILE' does not exist." + exit 1 +fi + +# Get the file extension and determine MIME type +FILE_EXT="${IMAGE_FILE##*.}" +MIME_TYPE="application/octet-stream" # Default MIME type + +case "$FILE_EXT" in + png|PNG) + MIME_TYPE="image/png" + ;; + jpg|jpeg|JPG|JPEG) + MIME_TYPE="image/jpeg" + ;; + gif|GIF) + MIME_TYPE="image/gif" + ;; + webp|WEBP) + MIME_TYPE="image/webp" + ;; + *) + echo "Warning: Unknown file extension. Using generic MIME type." + ;; +esac + +# Convert image to base64 +echo "Converting '$IMAGE_FILE' to base64..." + +# Different commands based on OS +if [ "$(uname)" == "Darwin" ]; then + # macOS + BASE64_DATA="data:$MIME_TYPE;base64,$(base64 -i "$IMAGE_FILE")" +else + # Linux and others + BASE64_DATA="data:$MIME_TYPE;base64,$(base64 -w 0 "$IMAGE_FILE")" +fi + +# Output the base64 data +if [ -n "$OUTPUT_FILE" ]; then + # Save to file if output file is specified + echo "$BASE64_DATA" > "$OUTPUT_FILE" + echo "Base64 data saved to '$OUTPUT_FILE'" + echo "Total length: ${#BASE64_DATA} characters" +else + # Display a preview and length if no output file + echo "Base64 Image Data (first 100 chars):" + echo "${BASE64_DATA:0:100}..." + echo "Total length: ${#BASE64_DATA} characters" + + echo "" + echo "To use with MCP server in multi_image_analysis:" + echo '{ + "images": [ + { + "url": "'"${BASE64_DATA:0:20}"'... (full base64 string)" + } + ], + "prompt": "Please describe this image in detail. What does it show?", + "model": "qwen/qwen2.5-vl-32b-instruct:free" +}' +fi + +exit 0 \ No newline at end of file diff --git a/full_base64.txt b/full_base64.txt new file mode 100644 index 0000000..24ec54a --- /dev/null +++ b/full_base64.txt @@ -0,0 +1,1594 @@ + +b2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAIABJREFUeJzsvVuzJNl5HbbWtzPrnNPdMz33 +AcC54TaAQBIgBNLiJUhRF1KUQjRlhiWGZPvVL3LYL3b4wS8M/wo7bMkRdtB+MWVHSJREU6JkCqJF +QKJIgAQxxH0wGGAwl57p2zlVufe3/PDtnZXn0jOn7z09e01FTVZVZlZmns5V67tTEjo6OjpuCEsC +iWWSkkje2N5IujtJM3N3M7uB3bLzWkdHx80g2MfdJQUN3RipBWZGmndyA3vrvNbR0XHjmAnkOB/d +/G6vtat31G5280fQ0dHxnkXwi6RYuFWkFvvRAjOXLUntWrKs67WOjo4bxxG9dkt4DQtqw0luu1ie +v+64dut6raOj48ZxRK/dqt0uSW2p0Y4ruHnh0OZdr3V0dNwwbpNeO/IVR3Z7olm6pLLOax0dHTeF +ORsjFm7rd51on8bLJfd1O7Sjo+Ndg2W4YLkcBum80PVaR0fHNXGy9+ok0+/22aFvf2w4HBWtgYXO +ax0dHSdi6ca61vtHknLvyhEuXwLgcSbu6Oh4z+KICjtRl13r/Sh+upN6bYkjfrfOax0dHcBJ6ux4 +LUFgyWtHnu/0QR/GNsGt81pHx3sZJ6qzI4SFw46ze43OjqDrtY6O9zTeXp0dqVh6exa7pwiu81pH +x3sRR4KJEQGYPz0xUHCHj/Bm0Hmto+O9ixM1Gt6FRHYEPS+3o+O9hWX+6ryMSI+4L0gNndc6Ot5r +WJLX3Jx2DhfgzubW3iZ0O7Sj4/7HiWlobx/0fFej67WOjvsfc9uy400Zlx/d3YO8heh6raPjPse1 +xBpOyuS4O4d4q9H1WkfH/Yy5ijM4K5I57ns10/VaR8d9jmslc9zH6Hqto+O+xRzixEnJHMskD9xf +Iq7zWkfH/Ykj4c7jvTrmiMH8zl071luNbod2dNyHOMJi7x0LNNB5raPj/sSS1O5K08e7iPfQqXZ0 +vEcw10gdGdp0t4/rzqHzWkfH/YZgsZgRdSRc8B7Be4vFOzreCzgeA72rh3MX0PVaR8f9hiMxUNxf +ORynQddrHR3velzrLu56raOj412JOTKAY1lp91PJ53Wh81pHx7sVy9r1IwlrUQf63iQ1AMPdPoCO +jo7rxonZG8sBBYH3LK91vdbR8S7DiaVRS+2GhR16dw/1bqHHDTo63jU4PvXuxPfxHvasBTqvdXS8 +y3Ct9LT3OJct0Xmto+NdgOV9ulzu6uxEdP9aR8e7AMvRBMerPjupHUHXax0d9zrecTRBxxF0vdbR +cU9j2ZYDi8S0Tmpvg67XOjrudVyrVfd9w2sCCAmtcy8k3NS5dV7r6Lh3cSRccP+2hxQqqc0LN4X7 +8hp1dNwPuNaAgiPzVu4DCAQkyEEBwKFzm9/RYvnt0fVaR8e9i3ugk1o1D09nGy7VVl1eKDHxGlrM +IQOC1AgY3HFcl8alONUV6LzW0XHP4cSpK3cpVqDm/SKDWli5KiQWuZBPlccAkMGH248YZwJQQV9C +CDWKQiPP+p2K0w0mbN43BLFyS7Uz1W05N1buvNbRcS9iOaF9mbN2h74dMMgXjnwcU0qhrRqjNJIR +BZH0JteomQLraodU28xd22/YcpwAwh1GKJ4bqckgwXiCY07Bqp3XOjruIRwvLbjDpKYqwxygaMEk +1GEGIxhK7pBeqxosOKkSHwTQCEEU0PRZ2wRU5b94zeY/I+WiUQKXugyVwLYabRlLjZc9btDRcW9h +yWJHktfu2AGwVTgQsmoxmgQHASqeSQESBbgkQUABHF7tSCrMVwISQ8rFegqDEkF7kiCxMGK+3vhc +TSeKkMGbKSqAqiKOguLR1JzU7dCOjnsKJ9aB3hlSO3EYAtnkGxhrYBEREOM/EDBV0SSBJmkRQKBT +VnnMZWZt8+BBJIgeTOdtf0FgzamH+rVHYgcO2ML7hkqCPW7Q0XGPwd3NzN3vWLbagtFQYwNbD1X1 +iKk9AxSdImAhvOQgBcKDBp2sLjTWrDsKMC7MUocoWCi6FlNwwLaBgjgGWFV11fw9kt5WD1HQ4l2q +81pHx72E46UFt1usLWKaW2t3YfnOlHJkE8pDyhnlMID06kKTyQQHabJwqaVKjw4ISkE8UrzrUhLk +JhMokzlkBjnZrOCZ13g8VrCNmyJiHN0O7ei4l3AHxNphdVYtzWWPEHdfxAhiGwAtLOp1uckniqq8 +4wCVjEZGLlqRNtAE5uI5+9oB2EiMo3bMdsCx+tnoDg8T8mjOR/XOteSQJa/NIdg4hnDGkerx0I6O +ewm3OxF3K8QqdUlbPRTUZpBcNX+sfgCofhpsGJ8zdlAiIS1pIAzcOC5kv7zh19/K339j/41LuLLh +lXW5Mvm+F580wlYjV2l6bJfPPjp++MkzH3xofHBvGKBSNIEjEWm6tkhoI+Ft6bCSVMunaxlx3Q7t +6LincKRq6pbvGTN1VoqiFOlePIEIomSLEQmoCRgEnJiM5hIp+UCukl0qeOXAv31h85Xvrb/6Rnnl +Cq5e5r4jc5AbKA2Qg5kuJJfTh+yDplVaP/uY/diHzv3o06vnHhlWGHIWDIatBeyERTIbwjI9dGUc +TphFqDXSeTuvdXTcIzgSDL0dnrVDU108oo81cXb24MsFA1Srxx0QaS4ChXTVCGYGCBtGXCr42hvT +F17a/OEr03cv+ZWrtoFNxrGkIhQMW4FFGZIkFR+ERBYUz0rTZsD+DzyMn/nomZ/+8M4HH911B+Ek +pbCTt9ltYBQ7LHx+4YiDACeIbod2dNxTCP/ardVrW/cZajGARM1WJQFHe7+6qBxO0c0TiEIRkLsx +g8nDry/QcsLXL/pnv73+/W9Nr17yAx/LaixumyxIyJgcZQIdVlSokpBgRjqwcjcZKAfOOMFivtlJ +5ZnH8i9+avdnP/LALjCpDCA90VQEGZMLFooMTprkgBEUnLI526PzWkfHPYJb7lwLGzMsSclpNFpx +V+R4IfJmD1Vr1b6VoOSTMQEmZCCinhTNsU4YTBcL/81L+V98bf9rbyorZY1roFCXnCw2FI2ecvFc +StpgdMqQzUEYTQBdiEKElMxhrgdQ8k52z+/bO/ip51b/0acf/oE9lSwgGaPooBGXuEjs8OqOQ80m +Qee1jo57B3MwNPjlJuOhTaYBmJUZHaisRpO7FmvWLDCpAM4Ik5pQzOAiYSC8YKJ2zF6+rH/wlauf +e2kzXd15cxwm2cZZ5BOxIfay7RZ5Qc6eJCuSYCRMyZIkZamJxDKaERvCku85x6TVUHaw/sQTm7/9 +qQc/+eReLnJhNAGMeAJbDVeci5EuGb0FOTqvdXTcM7hJvbY0XWdSI+VqWV5Ri6lDXxGVTdaoIEgt +XFajC1SGMYqWJAd9wB+/UX7jj6Z/+918dTQgrXNy8Kq0KjaBblwV3ykqxeWIXDVay74QSBC0Iita +GxzYp1aGMzBBZaUdlPM7hKb37ez/Z58+99PPnS3uSUhgaLNDvjXUsGyN2rLzWkfHvYTZEXYzYm1J +WNtECBkgj8zboChp6cjzVl1QLAxUDz+bPDXSK5NZSfzCK/5/feHgj96cJtu5ihWyZ2AodiURwKoo +gSK9lDMbFVLuRjOzaTCnNlMewV2wFHc5wkXm2nWbBs8cVmLeKTaUhwl4fnJ19e985sE//8HdlURv +latQywPxVm0vcnvFOq91dNwrWCZ54Dr12pFNahm6UXI4QYu01ajbVOu7ETXnJuRqxTU9V/8nKUlh +IfsmDV98xf+PP97/9ut6M43utvG0Ng2ZI7hOEGDZC8BkCXZu7WsVCgbzEGkDrGAqMLkkl1gchrJK +RZa87LiyYTPYnqWig4fkOyiPnNn8zU+d+4sf3t2BCBq3NaFVo2HZ4oMAhlv4V+no6LhVuF4j9Eiv +8HinhNk3xz0D4WgjJI8sMREp0m0tMiUcSpFggVpiQKbxhQvl//6TK994kwdMV4ttlIqJLiXbOFJG +iu9xHxxD4uUVLHOnQNEURPCNXDBBkAuShuKCYUhjMttwyhOFc24uOcbLuazp+1dW/+APr5zZ5U8/ +vePSKJiIZJBDgOaaesz2ae9T1NFxT6Am/jexdgObz+0n67KRAt22PYFaEKHWHdWOP1IrHGetV7JY +0c3ldFEDXrpcfuPL66+/rqsa3uJ4gCRwAEUaKHpOkpygJbrpAG7FV6p9QGouMFDkxeUud3f3jYFm +ozMX0bgLc/f1lDdlGqYC59pXPBheeWvnH/7hwRffyObMhRPgriBswuWSH7pondc6Ou4JHJ/ifl3Q +AmYmxaTRbUnRwlBVqyMgK92wsKazxWeR68baAE1XZf/qW5svvbx5c9q9lIdJNigZbRR3BZOPZntO +q51sSVqGsrxAFI1NfZLJUjKbH0wp8tEkuKsIY0rjYCsOA20kB6QrZpcLv/Gy/tHnrry0X5iQIVV3 +oUV/clUnW9drHR33Em6mgmpZI7Wt23Sp5nkdHWfVXhBo+bg1daI+SECkE+Yc+IVX1v/qxfVBxoHc +VYcdiO5yk5I0FrrkLghFgmtHSMmy2b6xkJD2qTVgIEwwwGDGIdES3SXogL6/Qtkdyiop4cqYDkZ6 +0pUhwcf9lH7/5fzPv7x/qRDimnCHQJq1E95et85rHR3venABoDbkqC3PQsdAc2ZcXQkSJaufhiet +JbtGaEFFUuL3DvDZb0+vXeVbtnrV4EkgMzKoTFwlDwyllOS+59h1mccYFpOlZAYjpQ1rlokgsxrV +FBXdN0BkYhroq7Qe7GqSkw9MvhEzeN55sOIVG9eePvvVzRe+NxFAITPhtSVv4/OqTjuvdXTcE7hJ +vbZ1zEmkwvWkuWJKh+aQiq2HNyRpAmonR7WOZhKcBA/Af/fy9ML3MjgeeDrDYcetruYYHYOkLHOt +PAozbTcWYIPDhR1XIlfgGSEJtX6TNDLyP5KQRGvsbNRgtj8wJ5wTa23qKHD0tPr+Ff3rr+1/PwvC +hsgOL3FClZvj0nVe6+i4J3CT/rVlGFRqlmXNul10M2sVoJERIVGMjP2gNUOdD8BCIeHigf7o5c3l +TTooGOF7ME8ckUbZkIGJQ+ZQtFMLEhRlUoNkpTBryGJ168vlq+2oFxmZaIDW0ASZNAp0THJBa5aL +oycjVunSygbnlPzqaqSNL7x88NXXSvMSqjSiRLjZul7r6LinMMu0G0jyQNM7as1vxepgC4vvUKi0 +xUApmUS5VCDF9LpgOCey6ZsX/MVLvqFNbtlsQ2Qpu7NMpknmmU5WSzZ2XKTkGoqn4ubuiMa6kmK8 +izQ3Dok3qTVzkTNjKL5yTtTKbM/TpLIC9jAOZklAgWP12iX/kxcP9kU3FJkzJr3ArB6HpJ6/1tHx +rsdsY1YN1hJVY/KAVGfbzbGFaOMtGuQFEk0U5CKM5qITo+OC8MVX99+84gfiFaWNxrMFdBW4wOQp +0wdwgJnRvajUiVPNzJXo5hadkBxOAKi1DUUygrAdYYDJWQxFsOw7ohkpTdk9rwezwWxwc5YDMWH8 +6qv7r+yffeqcFdfgdEW73KpZSXZe6+h412PWa8Epc0+O+nZN2VgYqoBqpWXMwosqpNryJ7LZEvja +Ff/y9zb7m0GgOUS5TxBBJqFASCgOwQ/EXcHr0Lxo5w0K23kqkQwskk6DwVxy0UwODUqgFxQXXQ5n +MaxgO+OYp4m5THADRRZHQnr59enlN8ozZ2uVmBujTKwOuup6raPj/sCRsEM192xZId7WRJ0VgGrA +RUiyFgW4OzA4c6F9+zV//S1sihWlHR8g5Rgf4AQk8wkpDWlIhLSZfJDDawm6QAcSSKMUncVR8+Va +4LUmC1OiNlQhjKE5KcdEJYLJKE3EkCVo5YSlS2t898K6PDUMaCJQiulYNMr7XOSOjvsCWzu0vYx+ +Hm2c07FmIcKcpN9yWlXbZUgAL4tf/t7+5Q0kWytlKUFGS24oKkVeNKzS6nzijq1ILx76LAqvUEQX +pFoOAJWY6wJGsUHUdxXjAW0/yRMskcYpUTtD2hlWQ9qn3FCSgXDakC27PJs8fe/NzX4BoOKcYyEe +LUeWFfAdHR3vXpyo1yI0Gtrs8KeIRI6ynQzK2mqScGmAvbHv33xtf7OhiiVXKtAkW4sbt+ywIml1 +DsPj2Df3/bxyJFlympgmDZPGjJSVJqVJcJkrwhEk0WobDiBLlowp2WBm4EAOJsI9QYlmpHECMtzp +kjZFBXZxn+uaNdKiEdEh3Cn1uveOjvsLWy8bnGodOhZxg7nrBWvr2ZrwVaKwqtChwXjxil/eB6eU +kFZ0LxpcK+e+iYmGVIT1WntZ5/ZoQ9pMjqJUlAQVJJgAp0ugfLR6AD7KEweY4CQTkROSWYpopnlK +lJQhCkMUfgoCk5xCAgkbaPsF+1lRA4vWlCmmGyR2O7Sj457BEVPxunAo1aNWSVFO89pucZkcVyvh +GQoHlDKjzRqNRtKpg02a8lDk7iUV2wgFDshohNmGJO2i+/c1iqTlXDy7u1AAsEDOAkDw2hXJCVfa +iNmLlER3d2hI9AQMUkJJqAcxMBl3vLoCd507hSOskKRMXBetC+vYZQI0RikY1fVaR8e9Akk3MxF5 +Nj8xS7Y62AC1aOqwHcptsm5k67sImVpI06Yy5al4TsUAIDlSkUNITO5yHy1hHHCZl64UO8hjAYXk +pLsgc9uYGSmX4JEIbIS5bEK0XfOkMcOLNlKiJcpAI0iYk4ZM2aw7xU113XEDl6uU4kiiW5sUGDVi +ZM/L7ei4N3Dz9QZoeq2+bEkeAI7yGmdSi21FJcjU8txErrN7YZFBVJHLoxgrZfdcVHzaZN9kZuxO +HDLgUq6FW5aBrDFHMyQyWnZAEAdqEJGdBbtI5txscprcM9YFVssgYCaCZnBVEeYJRljEBmLcX4n0 +FUagVlEW5pD3/LWOjnsDXMxqiQL1W7v3OVq6DJvGZ5G/W1NpQxFRU0FBjH8nHCGGEli8oMghI5UF +zzBaoZdogit4UAxTEcGNLQYqwz0qS6GcNaxI06p4gYHFjTaaAS4kQ6Ym4wi4HEYzQRpgRQWSe+TJ +1RKqFvit09+7Xuu4n6HDzRqvpYPUnnXoZf3v0ObLNa697Y0d6pGA5g3up2V1HDqeI/61o1swRvG1 +qKgojIC5UvQRd+266JBQspCBjDFzlYnsti4oMmEUBw/HXhRUudxT9OsQKY2AC+7REwQ5uztM2JHo +LmIqyi4X5CRhpJmputFQpCSkaARSeyWpVYeWOrqeVK836Hg34vR3Po/plEMeqDnbq5Vjt5eoxhlR +p6Ef7XGGNhKlqoX5jRuWWctDupm5LTFtxcwYw1kqFR8mzUNmaDtykZRTJqTCIdkOEqPdLQSn4EWQ +CiYfaCTEkgiRyd0JRo8iEYC5YLRahm+EfKbUaOVLbpwqSsZqo44sUnGRnMRhYDJTyswaHAKNJi8y +JUU7kPh7UEWwbdov2eMGHe8ezMR0hJVOswlOylzdroYj7NRm79YGPyJmpVPzXUk0X1BjxHjzJqgN +i662pzzBE/aAOl8qjlWgGKywDUr4YfdaDDCQuYol0U2FGpM4SmsfCxwGdwnZPWUWZ4aPoGhTgkkE +HFGcRRIOGQgpu5jBwUQbZEJxwuAOiRwgdw20ArhgBUwGCE6YipAIciiSu1ZIkmeQgtFXYzIzZ52W +QJng86yDzmsd9zROJKYjJtvbbz4/oxmkx6lt8S2q1DTPqRPaaEppHlIZ60T/xNo/o41IujlSW85F +xmHyvY6dwByR/e+EEXTq2juK0yyUhGRwoTjTAzvcTcheDGBhjvhqESZLMrBMKCOTAY761zGCUWUA +FZMAA1dmmVYs2hhZgbtgEGUJlktxSgmjTA4f6rgZFNLhQLIEZkjuTnfPSua2m/Z2uBooOQVPihlV +apkrndc67lEczrc6ZEgu2ertrdHjmwdfzPTRVpufWbVbszUpJDY1RoYUinCjKPp8uIuFmzZFZx6/ +wZ24aIyuQFFDEEXv14gbCDKYR1arw+mE+OADaWcXyYO2SircsNhkFuale55gEmmFTEABRLhVjo/R +ngByiDM5aSBoWMGMyGYFSCIcRjnhOU+i7Q5pADNG0eUOmlFyleITkssGmeHcrs6MIaaNdVhDiGyg ++9c67jUcUWRod/txUjvlbb9UZ3Mj7FhYcCI1W5+VCQpk8OhNMc/VlASDqSVEyNC0WvufblyxHWG0 +G2S31gfNANEihc1kLpkBoHuMqNp+bT0X1u5rRvOic7v20B4sF08yUO7MZSwxYQosNrhcDomgGw3y +ASkZaIWlCHQVCu5WAPmGSClZoswKVACm2j2kFFAuV5pQHOPOIGnjDnElWeFajiJmwDgmrpIeOTfu +GSmDRczGJDcQRnS91nGvYU6/WsqrpSF5yC92anab1d/yK5YfY+4kLYGoLSEa9bVRmpH1CUkJQXok +ttZpZcUbZbb5lOdJ7DeYoGuMmvMIb9KjrySk9rNxJH2NHucrq109UHRu1556bGfUpbXykHcP8jQU +orjciyu5F0AyyySQE5lgoMsJN8KTUg1YhO+Ng3s1d12iRsAtOQjXIHN5EhNcB0VT7XBkIEHPvpOZ +sgleklPlgR0+9cjuaFWQmuqlp9XWJJ3XOu4+ToxvHvegH184kdSWZKdWCxlsNfMFFlwZK7a+Fy4j +w7QxhmlWCNMyoKBCzwQAkxGRdRphU9XicW3f2m74TjgeFTl9kOTQNWlxWpKSgzEDyhkxw9YtW4c2 +NVTmllOgRun5D+w9fO7iwZUidxZiA+VicrlLHIAsl2Ewg7O6IMPZljA4SI4pCQYrCV7iIyctsoXp +qlWdolTm0AutCET8cjh9t5hKGorWRrMyMD+5l556aLDg6lpngJa9RqD3X+u42zhy64ZaicgdFgn0 +x/39x+/2pShbLke2/dxYETUisOWiArDe9knihLLP6YoO9rF/gEmOQozijoYHtHOOZ/ewkxpVFdV7 +mjUyOo/ebPmo1yPilhcBLUH3NJr0yMUJAgPZhGhYzYS7INLoqsHceryq9UpuYiGgoo88bj/w5Or1 +L63zYAmr5NklToADCQVgVnJhBBIySSENBBhpvialYeAqlWyassM3USkFi8wzjwaW8ZcAVarRD8FA +81Kqh5UFpRhp3CVG8yce3Xv0bM3Pqz5YmmrXSkHdv9Zx93AkMrB0oi3l2CGGWuC4ojm6fk0+j1Xd +I4szSK41P8wAyNEB4rL5G9p/2S98g9//kl75Cl//Bi8NKgfIUCJ5Fuk8dj/gDzxhDz6fH3uejz9n +TzzKPVPclTJJFGih11ooAteVs7G8GsFus7R8m72cKPEs9JBgotNr58UwtomidmiRXda6PkbjSBZ/ +aDV86oNnvvrCa29hZJQNFGeB5cQNsjlRp7VYkugpEyt6YgJo5hQFRE5HpJpkN8oSkAzkSkSR0zdE +ctAFoiQCVlCQ3ZyTeUFixgS3pMT0wK4+8v7VuUR4mzMDS3ALcewgu17ruBtYMtr8zhEn2hG2epud +4LCjPT6LvNpoNU2pEEmt+z0ooahmBTjL67b+Kt54IX//BXv539t3Pq/vXrGL+5jA2gkRSIADDgJO +03g2nXkqP/rn8gc+g2d+LD378fHJ89gBED1oHUJ0q63hSJze6bY0osPddl2OtqbXavJFcoEKIzSY +kg7Bq6Kj1XnIFGGsUwgMkEuE//BzO597emf/G1Me7GriagoecXdYUZKLKAaaDZSSy6zAffJR9BVF +9yJOxVGMSoVlAAAlyB0FriIi0neNIM0AwjM0FHpGSpAVATAMSWPyp57c+eBjTCLhUSAhyiL5N+Ki +8Bsv1+jouEks3WrHY39v41Q6MRniUCQRqPZgTZYNeoILcJJ5IozI4Fs4+LK+83l9+w/sxd/Fy9/F +axtehg7ADNBUrUrAgKgkCs/0ABIa4bsrnjnjj/9K/shfTh//2eFDj2kXiFyJ2jbHlFoj2hu5Mljy +9fWER+OHwkCnF5d5Ugiy2jcIgEoIKUBImL/O5RCcJcGT/cYXLv/D33rryuW9q5P5ZddUUrZxMi9o +F5YQmFDMeXYXA/JmAwmjjePgBsndDEaMKIlpNFi4ANwlN45CNmEwCsmMYFZhEcRCsuRsvhp4fgcP +PLD5hR8593Mf29mDDxQJo4kYpGRxiRlB4M5rHXcasxJZ6qxTOshP3NXyZfOWRx596A46JSoVAjal +aSV7FZs/wYv/TF/+PX7zc3z1Mt4EL0IHAFg92hl0aABLraSuXrIEJIpgEgZoBYzAuXP+8H9aPvYr +w4/+JJ8aMUoeSnI+NlY391ZPveOpHqG209ihhzassg0FLkUfD1TTNMxKqNBEp1Iz2+tfxIUJGBO+ +f9n/p99+/Y+/xLIer1wtfkXDgY3ZkIFJtXhJkslNHAatKIvWHGaJoMoAjslTKgNB2cpg1b8ZX0iq +GJVIopWtQYJbGTLShPWq7O3poR3/0DP2t3703EfPE/CRFJFoA8UodYCRstTt0I67gdmEXPrFrzdp +Y8mG9YPqqYcQPfXRpisR0iC6eZEm2Ld44Tf9i//Ev/DZ8aWrugjuAxnagBugSAJj5EkBN4C1zDS2 +yGkSBygDCdgBV9D6crr4P9hr/7R847/mZ36Jn/4AHq5HaIKscVorwjodqfFw2geuTW1H3q+XRXMS +BzUHQxENgDyOo9VXeEQzm1lvkBtQCh89N/yFH3noO6++/torw2ov6UrxXMq+M4OT4HR3ChhoK9IK +CjWKZjnBa9KMBsCSkSYvPnliyqk4lcQiMQF1WhXN4JQ5TEYxxrUAsMS9B/WJp3d+4FySyhAiEYRk +hCzq3+PEe55Hxx3EiYbncYvyendYvezhZmnBP1WPtiQ6fBCKwQWn/pgv/m/6vX+a/uSb6XVoH1xD +EzBFvQ7oYSK1RAgtllHNLhQgMjoKcBVagyO0Mhx8c7jy35WXv+Qv/ufpL36MzwxyU6vJYnXwtUrS +d1Cpy4jKEWF7movTgg+VzegW/KxIVmvcalunJJv2cjMjuZK8aM3y6ad2v/qDe7/5+iUrZ8sO81q6 +4rjsmICJNCCRBXJoLIaEQowYPKFPwFe6AAAgAElEQVRAOyBkxXxDTEVWElhSscTgIiNBtYwZ+lDd +bUC2YgXy5DujnWF+5iH71AdWZ8wBa03kgsdaARVFs57n0XHncDzWOQdAr5fR5j0c4kQBcmc0nqh5 +6IBAJMplgvYt/z6+9b/od/8RX7ioC4arzg00gbnyFx0Iq1M1UIBgMSGyQTC0TwUk0OuyHJwcK2r9 +lm3+Hj73gl/+7/nXfowfLO6RX4owjaV2C9axSW9z+lykfVyvtX44ihoF/FAtP4jqcwdgZBI2hOho +WcftjwUaWLSb/Oc/cf5bX9/80dfWtrfDDbFCMdmB0gG5IoxaCVGyPjlXhiwaMFohYXArmgqANMqT +mQYIRmZKBhNTsiSXOaKjCAVpcsAw0HeYHz2Tf+yDDz59llIZI4HFIDBZ7UJSO0sC6vHQjjuGpfo4 +TeLC2+CIHVpbuUYBtixBhSyMMigLLxuojPJv8K3/GZ/9f/jlK7pIXnJMwAYsTY7ltlDi6BqdAbXY +UUBuXQsLMM6puohK0dpMI6/N/zm/8GD2/2r8xZ/kcyglJyYlY1TSV87VKXjquGQ7pcJtW0GRjm+A +jC7R6iiUWTsTKTLtADeYpSAIGt2xAiYv7zs//JWfeui7r71y4ftptbIrK08DUqIyQDfClJTjD6By +pmCHAJTdNlQCEjmKKZVJaRWaFVNUoo7JybRRhstJ8zII4igNLJvdskI5N+bPPL/3mWd3V5GQ4qrd +fWuMiLA5Y9AJpl/91V+9gX9YHR3XhWV4aukqujFeW6aA1BteEBQjSmAeTumY5GEgqIOEP8BX/55+ +9zfshat6k9wXNsC0MDNndTYvzB/Fo3nZqmdsnjm8CACwQAALUMj8gl14xd/4GN/3OB92OCOhwYhw +3x0+o7c52fnT5cJphFvz5s2/Iqh++UVyDMOdJoQCKu1kGD0yzK3AE+F4/JHRiBe+fqnkJBBZynIj +pyIIxZiZ1sAEXBUnd7mJ4Vw0wAq1KZAse4wuNjLJBhkKho3LcymQCwVDFgp80FmbHjyDTz2/+1f/ +7Lknd0EhAbAYOWVGDnEeBrKOewes67WOO4HZ/x3ZWDcQKzi+wy1XOrR1g0swyE0mgJTDnfyGXvk1 +/f4/4Z/u63ViX9hv1qW3R1mQWqA0RmthRaCJNbV32F6iblh98WsBsP1/rD+66mf+x/TLT/vjkxcq +Wi26ZKc/7+NxklM62trlnbPZgARIlHn4IecAhoUhr5EEVOBuppByKY1wOVZefuFHz1+47P/4n721 +GlbTOXhOq0m+Iq7SNoIVAcqAXEU0U0HtieYJEAYMmSpwzz5lDQlmMAzEJrlWGhwAC1xW0mg2anfX +P/q+9AufPvv0HiwLFv0ro7xdDO8hYe1UCDrU9VrHncCSv04UIDewQ7T7tXZGM5OQEL2FQpw46MX4 +Gq78uj73a/zia7xA7Iuh1GZjc9lm0Q8zlxrNzStwQWqpvZNC9wAGJMjDto00hJf9wjkfPzU8O8oc +FmEJzl3bTnEdjkiz01/A5aeHIw9CbaBttYZ13qFkNMM2nzi5mUFGua+SffzZPd+UP33xCgstpbXK +uE4aUAgYfHSnKwlJtiFRB0wxURIL6DBjcnoRMyzLMlTcQWYmB4rEzBXT2XJm5R98Cn/jp85//Mkh +eiBxYBWblkgMqHPjDfVUXLIb7jXc0XFdWHrWbpjLTt4holcOa7N71twKQiay2Brld/iV/xNffJnf +g94S11BpdqU1MiKiynEbE1japL5QZ2oUxvbOTGqp+dqi5n0SD6jNxi79r/z/fsf/2Exh+Up0xSCA +FiF9Jxw3vQ8p1lNsjsWviwi2WEYQmVrmHxk1pRzIQWYsPqiE3WzjlHHG8B//wiO/+NfPrR5aO/dX +50t+uGAPWHm4vAjaQVI2nxzZy5R5IE2uIkAq0iSIyc2ygRDgTk4012TTetj4nu3u2V7SR57Br/zU +I598emUuihgi4FmPMlVfA0mqhkWrU6LrtY47h5uXaTgs/RTNEyGjNRd484fT4MqGL+Olv4/P/r/8 +huMSOAEH2HaDDNjCZYZmfnLBblioNmsLsTwcJrUWPKWhZpjKiLdsUzz9hH3ovPYctb/4fDHsdAWk +R7npiIfxdNdt4dmMbLGow0AcrQCjASJrLSmiWAlGMkEDVdx3R/vh5849en589cL+6xczpcHFmJxc +s2SAQTD3WnMBDlIMKa3Hymj4VsxJDkYf3JJj0HAmnd3F2eHqJ58ff/nPP/LxDwyYfAc2QIvLzwFK +cgFWNaHijEKrdV7ruO04fdL8afYz6z4zUwxhq5aUIRr1E0bPQja9bvu/zn/7a/jCVb4BTKgWqC+C +ALbQX3Myx2yE1m9uzzPfseV8pMUe4p6zVkwaGa9ZIi191/c/xId+yJ4xpyP4hKy2nrEOMX5nhorT +n+vhryv2svxdqUHS+u2RM9GOaV7HNLiBqM3oIJkSmQsH4KPPrZ5//qwN+Y0L0xuXD4jCJJgrwUeH +yZxwWAEJjlGU65C8uCZXKy0wc4xeVj6sbHfXdnf14JmrP/7D537ppx/+4GOWspLBVGDBX0ZjEgYR +tbyAkY23NO07r3XcXswyYXkr3tiujsgTl7zOxY17O7ImkEQHixUZ/9Bf+vv4/Av2InQJPAByS09L +jZhmi3IOa/phCtOCyJYUFjsZF3otkLbjK8kYYALYAVSI/4AffhRn6alYtOYhiKqQeB2Mz0VA85SX +dN6kLWjxdpSPK0ph2xWlJKNFTNkUM9dNZDIAys4nHho/+bEzH31+KDvp4tVLFy9vipdkXOVEljLS +kzSCRmzAIiXlOu9KSCh7jpUrOVd55wztjMa99VMfyH/lJx/6Sz96/v0PCNkH0RKQQBoMNEtCik7A +4bkzGLX4O4K9D3jH7caSiW6G1OZmjbGf0vqFbW3SOXjggpTIl3H5c/ryF/gytA9lILc+aKk97yyC +nvuHxRoX+R+zoYqFW22p8mZem1We1c1rTcJErn/LX/yD9LVn+TiYwxHogIkWrXdPbVEell2ndVke +S3yrG7XoqpnNpSBxkkqR6YYaXIiwYwxVj+9bb3wc0mc+fv6HPvjgn/zMo7/9u6//68+++trXLk4+ +JppZogaHl0SDKSVG9f8IDClaB6QB2GM6Wx56ZHjm6Z1PfOj8J57Ze+6JYRfuxROIVHtNIoSliWUb ++CZJeDQ2iHYecbKd1zpuL2YjNLLbb3APJEWP1o9AkTej6dCNaoTcIlNsIr/i3//f7Wtv2ev0A3HT +ytcNGIGdEbvAIHiGNx23btQ2O9fQ2C0t+A4L11t8lBpXBuZU3gzEVBRIOfPi7/gLP50++ZDODh6T +gl0yL0fT2d7xghwObp7qp2Ip8Zb7ae9vV7P24wEFkdSaW0YuICCYiAEwMnvZOMaV/cif2fmhj/3A +f/jzj//eH174d7//5je+fOXyhYPpKpKttOObBHfj2sYd+BngTBrP2GqXDz08PPa+3WefOvODzz7w +kfePD55LhCh3eArRGJ0/CMCj2bhMMT2wJt3Vhp6Hfjg7r3XcXqjNjtMNdevH1lISnTSUIIPjVi0p +dxgKSeASrvx7fe1lvgZtxAksTXkNwM4ezv8lPHEWu5dw8CW89SLecqwaE9UDB7BQcNNCkVmzYdGs +UVtEV+cVFrVZEpgh/Ja+85/opT/LPyOWUqvhZ4ZiLbI6hYttXjh9SPRt9lNPuNXtLi6pYiwoGKOM +m8+QAClicCYSlBwTYfCPP736+NNP/I2fe+IbL+1/8U/feunbly68mS5ePCjwnZ0xDVztDWfP7jxw +Nj366M4TT+w8+dDw6Pmds2cwmFAkLyYMAofkqf54oVn+CbV4omYY29xXmFvvIIDOax23G0tJdWNx +g3bPC2SQGluBwaEvkpw0kfCS9G2/8C/ta2/ZG/ANbJpvR2C1h7M/jkc+jGc+gkdew+UVvvUm1m9i +f0FMy6KCZfkBDj9zwWtDo7bl5qjGrzuM4PSSX/1a+d6n0/PRuLqwevCNJOVeU+bvMI5IuUNVbgl1 +Rp+FL6CVWbhIiopZBYLvuEk8kBfw7Eo/8uEzn/rwmf3y/kv7OLiaCUR5vMx2E9OAYYRBzJT7Ri5H +ghlgBJM5BGPyIDANUg1eNBdhm3c4l4od+lfVea3jNmJ5h9ywc01SNA8sbSrIcZ+dJIo0h6fB/Yr5 +H+ibX+R3HJeItTShBs1MGD6AnSdw7qN49KN4/DGcfQ1vDNgBUgxsiu+Moz5mex5xqMVjAFbAqtGc +WuloAtYAtkKPk5BfLJevpvVZ7ooM95uDiFHBtOO/AW9z3ZaB5uv+tWizs2L7ZTQxWK4VNdSrEToJ +0nYijVTjHSIr7WgADCwFGYI7DQ+dNZ4xOh2YQpAWV4FnedRCgatEo8HdExwc6KMgJGNUtNZIRjOc +Ed1BF9r26Ml3Xuu4jeCx8qkbuANr6kFE7FzR2eKIP4VkzCJymxKH1/Xmb+PLr/F108a5D9aqR2EA +RsLOYhjACfYmNhkHZ5FfA7Stez8SIUV7c365TOhNwArYaxwX/rhN5Tg5kBHTSOWO/e/7pUtlc44r +F4MkDKaoGSXcEZJtaWyeeFmOGPjXe2Fbf5HwT0UBOZenv/DgzccQhihrdX+dwUpATqVQT4BBUZGO +ZAUqJY4WuU5bAAxmSDQBkg9gMZhkiaK3kl6Ymke2dlqLkDFokYrdOo6cdNKd1zpuI25VmQFb2G5m +xiO6JlaSwwGZfwPf/SJe2jCbr2Fz3oaFQtlA38Plr+M738Ol1/HWV/Dm69gH9oFNc4qpya656mAZ +OhgWqWoDMDZeG1pGWwbW1Yalwx3mcEJw+Su8/Bavvh8PKJiYzNTgBCGLYamLEz9FdzbgZvRaON0t +rmb7KLTb7LCvr+LC19DBIubgLrPo4Em5zGaZpwSmmj/CGLHCRb/xuLSRv8H6RkLTYWqthVlrvlBL +u2p3zrf7R9V5reM2YtYUi7jb9bNbzOr1yONgzeJfhA7iK4wGuohC/65feEtvAQeOslBdkSbiVzF9 +B5cOsHHYGus/xRuXcQFYA5sFkeWm1+btuSgq4MIIHYFdYJdYhXYTNlvF1+bHQx4hgu/i4JKuyhiO +qZBsaAksYQDOF23pyz9yGx8h9+ultgWvLe1K1us072or4CrNAECMw1mwW03E0zzhCgDCDhUAyGpf +kciJmwkUMWwFQougADUsQW8JJkF5VVSqHtPbn2zntY7bhaWwwjVuzlOBcySf8603W17zQviDknOD +8l1degNXoH2wgLn5/kNwbV6DXsMEDEAG9oFLwKaps5BmuS3MVVM4vJAOP1bAzodxJmEQ7GWky9uA +KWoclmtISPlVv/pWuVoGJRfcJA50VaOwNjFa2tfby3D4ui0N/Lnr5HVdVFQ7tOXocmmHblXwAoo3 +ruEEqOnRdVWJZtU1FjRa62FR05Fnv13Lo1ueo+TJ2FbZ7vmUErXzWsftwuxcw2LQ7w1ao4c8PxXL +f+LzBAAjM/xlXj0wN4dvjdC58+0Bop0kCGyANbAPoHX44DY/o244m59aMN2MkGy2h7SLYUTKSOeg +Cat1nY4EeIEJ7sHqrzNfwUGRW3PQh1ZRdGaLivjmoz/xqh4PKdyEmb8UpDhpYYYLZnC0aEN1e87f +ftKfhrXdOY8c5/LU1EritMhwlLT9my9+Hd/R7RjovNZxu3CrnGtvs/Mj3xJumX0eXMxXwCI6FHoN +gID1orNQcFz0lZwWLdiwaI07c9ycvYG2eSzPcQN7GM2rBO7CBgxrABih3Za/VuCKzvtr5TXzgBVi +UlZk0qtOJ8bh0Qdx23MxwOU4NeCmqO2U4DZ3rZYkzMHI7fcu/W7zsrZHy8VCnaKgBh7e3xztXJ7a +KU+z81rH7YJuOiMXaH4nSLimocU2PJi0Qq2x2ecVUFQRc6uUMiAjpmRWXiqgQzH2+EgH8LrjFj1Y +9vBgi4Ra88Q54G+gPAQHklAMMpQzwNW65grYgdaCQ5Qrm5vXXuBunoITox9ajTRqKW+PCDS1FIyl +druxy3v4Up8g0g5d5nbtHNZMx6Uf7pqGc3zg7mYEtgtHOLqd4PzyhML+U55p57WO24VbYihF+ZTJ +Ikrn1cUNLmb0Le5tASzQPjZQBgrUJFjEDFiqWynmrQSpaRZuaZvtsLiVFsVVgTnHzZvc2xxg8xLs +PMpl8CocCJuqgIIn2BDpHJA9GE0dRWOU7nOI4w8ffusPdOQyLp2Vt9QOXXzRO3yuZnpKMMIbr+nw +xbn2/k8yIY9z9C1B57WOexpRPlUsJpBjOzb3cM5HDZW2ub4rGUioILJBUbZxyTnVluEpUiuGD9UW +AcHlXbp0q3kTa1q0nPSwcC8iX8KobbOQDGwa0wo0ZALjyGRCoQpgSnFnGxDUHdMY1AKjx8lrSWG3 +kNRwCr2mlkZojcviYp1q65N47URf4YlrXi86r3XcLujmEke3O2HN8gBhh11Lh8RajelpxLjiAIXr +2VujR7VsgniOygWveanbmQYLCbJFvPBGWMs5L7ml4B4ARdt1YmcOCVaipgAizHekJEuYUyM8goJ1 +Dp6D7VJto42HCtSPctmtcqu9IzO1aTPLuOmcCvPOvHaEoE/Um0tZeoTsrgud1zpuF26NHRrGWdAS +tbwl0KyY+U2Xs9jeYCtfwVjLkuq0gdlsUnV8S2jD+eo9W9MY0PK5fPaML4IGalzZHHbV0Ra1U5tt +MCGabQe3agNk2ACVxzWe55mBKcYC1iSLenXmuQOHqvqPX7rbESJ4xz3ObD17KFWpDcfiqidtfg2Z +eZyju17ruHdx5If3xqhtjgNGlNBarXN8urzzBQEq4KjhYZ1FSUoGYWt7hmsI8zMAr+42NMcREW0e +AS50yWyHhjCJAOscDI2TKo3mUJ9p0AAmqEAHoIOi80zZfWg4N0S5EdyJUrtkb13kp2+fezcQ12XW +sCY4anM2HNe6197LLdabS3Re67hdiNtymcJ2Y3Zo1X0h1yI6sLBwD8cNCPOROx/n4w9PwwUrUKo2 +ZlHNuwpbqmq3VAt5qiHlLe1egLUQBRZ2aJir1nJEvAVM5w5Iqa2QIAATQKgAG0gQDDvvw97D4znz +VuJefWmVl+cc1dkOvZfBal0TLQpzqiE0tx+d1zpuF4749W8sKWHeykCB4Q87buHW1USiJKUfxFMf +8cc+X16lVuIVEIDBw9Hm1RoN8nDGUIRmn2Kbv1bN0mYgbpN7Y4WpHeNcmTDV0lEZaNFOEh5kmlHC +mTY8Z488yjNqwlPRW4kUoW3AwHh7hAzquQUPaV4AUBsSx1Vvdvdx9bU0QltPEDa3pBaRhLuJzmsd +txFcZJPecBabtqWgjBimBBqXmXERVSBJJ53PDU+8vzyN/FUC4lCbShLb8aAiUOBNXnjziUeTL9Mh +Y2vrHfc6r0AxAnlahB3GLbVxiIb87bYPQy1BeIZnPpTed76cEWEQhQQVEi4yenE30rh2s4qbBwFn +8C6dbjAAHv1w45IvlOrSswiALeXPYifRgqN6QaHW0/juos8P7bi9WIbztMD17gFAitoabu+2bZLH +nIYAyqZH+cDP8wcfWz/obpShAB4JswAK5CiO4vDFs+IxAZFzUQeTbguo6ryCFl0NOuPUwggHbUJC +gWLq1QRkIEMbaAIyNDyvR5+1J5OMJSbN0cUhiidrVm6MCsQcUbgdmC3feWpEiDZtdaxibkCNYywe +bTxq3cRZB9CIWoRH7zI6r3XcXszW4o2NhlvugWYJnG+/qMJZrENFlgRI2c+m55/XUygrll1ohEcV +wIgyogjeCMu1VW2R8iYHBG+FBzW80AIIle8KlCGHgrZKe0xQgQBlKMMnlIwS7yTzMz9RnnrWngB8 +Ns6B6j4MW9jVjLkW3rgDWEY02xv1fJeMZm0B7RkQ5NU5EI6ARvmLAM1dQOe1jtuLI8lKS9V2XXuY +XzJa4x4rGFRTcqkYsn8ovf9v7fzk7voRz7soO9CAMkGOApQCEUr10dp/BVtGgmzLv2UriETVLiDm +2iwWoCCGJzB6Hnr9lA4WeDyELPjwCX/oJ1YfeUh7oqFdixQn09Lmto7Im4gbzJxyLXKZvf1V/y7e +UfMpziHhhb8sgse1CWW8qGPj28DDBRUCJ5vRd4LrOq913F4sowdLXruum3Zxt2/F3pEkkhpREBJN +zHL+4u6f+8v2Q9isrIyYRviIUuBeo5YebjUBKZo+ooSBFQXqsyJRTUPjtl9Zu8FR6bTasG05Cgyq +zTvBC7XaK2f/Ap/9yPAcWuPE+YxgdiQ1j+GEv365U/3/jXeuRS419w+s/dJQZeOc29L8i5oTmtUc +m2odSIRoQ6IIGIgSbLG+Dj/QKnxvm3W9QOe1jtuOI4HRI10cTrP5MgDKGI00h1YX3S+q34gAU0F+ +Px75L8793A/7M55HaIQPyAkZmFJlNBrc4AVSDVzOKscdpcALVOAF8Hp7eltQqTWgcvgEz/CCkmvd +pMengmTFpPQxPPYL6VMP41x2M9WM4sSQn7KY8busaueN8Nocu20RX1xDr4Xi1bygqHk4VGi21W7t +wXm5ZrGFXy06loSfToToYC2hiJOqGzZbtfoAFPpUi6LXW4XOax13AmzAYZ6aYwJvg5m2lpsPrOTI +bcfWuK3oUnIbRM/5x3c++Xcf+KsPr59AXqEMKANKQiZyQQ4ua/6s2YnkhlLq+9mRC6aMsqn0F0ke +keyGcM9lFKGUyoM+wSeooDgKOA3u5x4vD/8yfviT9uFRbvK4yWuGR9z5c4nBoezc60/3iwtWPYJc +5iLPLrP6B1kYlc1yDNVa/WgC3jGyGfkdBI11gaxl+xEEidOMTpmOeEeVC1XXnf+suHXs1nmt4w5h +aTbOC8s0tGtteMSVJqklgLbhknFvKMyfTDCFdWm+l/HXz/zsL5/9GRycR9lBWdWbNwPFUYQCiCiC +xz0+wK0+iiGrrlMAd3ipkdOovvK2By8oQvFt2KHE/k22+6Ae+EV94q/t/NgZ28s+DrDg45nFKrly +rl49dKtf30UGZju0taplexkrzJkckaLSvnOWVIcW3pFlmrxTJUdJlAhvarw9M3521BykkTTHWbJt +RfetQM9f67hDmO/VIwR31K/0tnvY+p7oIXbc5AIkYwxBGuIuIpCUJulRP/Nfnv+lN/ff+PXpd5Ac +E4ErSAOYkAuMSNG8KMMGDHEnW201JNYGsW5wwBwYaoYWHaWFGuowEqEkgLBwrplp9PTgh+3pv5l+ +4oPpycHb7HQmQkkwQg4z0MJF1dqZL0/2ui5ye5oryBb+tTk2EC/qy+ZKa1u3hbmL5Cm+M/JsmqOu +SkSFjwDtGGbdWKc6EIYajD7yj+G6TvlEdF7ruKNYCrSohcJCyuGd/mU3chRgLjdYnXOkRd/oWBEA +LUEq+UPjk//N43/78qv7v5k/b7ji2sALfA0ASbVIIBElwwVrd2eMOjfACeRaQlBDn7ZNbYO2yfnu +SANKAkbz0e38s+un/+7qJz6x8+GUBxiTjJ7dOMCspXkAYp1Vf8jLfwN3+ILIQg15GxIqIHJ+nbWy +FY2/5g3VXlXH2jt/ffPDsf6H+Ufl+A7jT+KSRQM6zWOViTawou71ptsldF7ruKM4oteWNuZphFv9 +p88axQu/dZJAq6PgWwOz7dcZh6l8cvXcf/vo31l/v/zL/AeJXtZXYMAqoQhJAGH+/7P35kGSXPd5 +4Pf9XmZVd889GAAEAQIieEsktSIl6rIOWrZsS5YUsmSvVrYly/YetsOKDYd2I7z2encjZG/4ivBa +612H1w75kHetw5ZEyhZF6uApEjxEECB44D4GwNxXX9VV+X7f/vGOyqrq7ukZzABDuX+YaGRVZWVl +vnzvy+93g44QSuStZU4TAUSQCI6YGIyBDhCyaSpodjg0YAsjusbt8J3xxJ8ZvOPdzdcfj8tOWASI +aAxpWWerWmag1QfyUghL8RhU2sQSScsaVTuLODM3Z2HjKjJnGusZBFSOM71f0zuSyWE9k975z4Y3 +Xh9pxT6u7cvLL3OP4jl06+9Qt7f5et3IVSERSCLbderRzMxgsek8jt+x9Pq/dft/tXQmvC9+lo1j +HKUOjWEyhgHWIDDnWaX+blmjzOEQkCEEgJAnu382tSeapgi0MAOFbhl2+Gg88ef1DT/SfPPtXOlM +hIKsg3fGYbRqX8/llFycbYd8nWObRqi8Sp7d4sPctsPWS5Jp/E3fngDJlSGu6LdePk32xNRyVJBL +7JG1/pR4KRa3G1l7d1/25VqlP4PrO1jwFSx+BYsgSFDoMINraaMjQsTIuibwkdFTf/fsL/3q1gOu +i+jWAEeYQBM4MHQMmszFzGCWI9HMsu6ZNpKuaqWTAQAX1AJLCMvUUOHIId7+Y/71P3Hg3a8PtxvM +k1tABpeZDSMVkDsJB/RWfe8yS3IpMu2pBX+n8V9XNYGVuA329r+6l3PHo+1wL/rseNs9ExnvJZwA +OYgvhyJbeVDtPBnmdOSryD6u7csrLHPEbS6aaVFdxQ7rx5UsR3LIZy01Bnby4JjQrWmfnJz6v1/4 +xV9Y+8gZOwOs5jpCkzEUsWxoGxhLYxYDVTYIAGa5aQmJDhBhATJgCAxpB8RD9+iuHw7v+NGVb389 +7/CGw8hk0nJFIxswwJSanDMteOyieadhKNtceHOvw3yjOBp6d2pRT5RqG6n5m9j/biFo8mQshfdj +lXOjazNJ7s5MZYuzl1e/ln1c25dbQrYlbn1ryzbrZ1ZjzTpWMnwlaMuBpuzgBpizoyBYsPO++ovn +fvPnzr7/03oaWANGRCdtgREDQ8h2NTTJ2l4QLUlibTbInlAYFGgr8iFw8D77qr/QfvMPL3/jXeGo +0AxEtygESAOHG1qkcuY5ErfgwPxaneVrmWddO1+r5rY97b+77A5nScGENFU/i8Vg/nVRuD1z615a +XDXJlcMCmdaxB+5Xd53v49q+3CIyp2DWNzFL0DALZ9OVVqLfa9S8UpaApJJVRCUnp4KFsekza1/+ +t6fe/8trD5zBKWgLFo2bYrh86L4AACAASURBVJQ5TGistP6sSVSO0CCExNGIgLBMb5wtfKXtDvwh +e8ufOfid33zga45hJQINrZFSoAhpLYzZ5algtc7m9sbxCmEF8Ar3AUqnmWkIxcsgxfM5jRSZi9ep +5rRSjaR8LY+fhOwsEYgU45KvrVx++Yoko3lyruYDqA4Bixd3F3Tbx7V9ubVkTi31Xg/wq5qQy9pL +gfaZVnj2zqXWKUiAl+LImtBc8o2PnXvwF85/7Lc3fu9sfDFygsYNY6gTXcFhAg3BQCEQZrSW1oCt +W4CW0awEb++Jd/3g8tf9iQPf9PrB3Usaghh2MGiS6mGCbSaeJEArkWU9AjMnDjeYg4QT5pDBHTCY +pu5Yd1xvZ9ZrFU05IwrlQkW39H5RQEvto5Qv6gp0kE5CMiWDAVM/ChCSw4nUyiaVR88xIaAp+5pT +an3uddFTdreXfVzbl1tO5ohAfXPR1jZnmGMp+VNaPfVLfVCSE8WvIHNEo4ihhYvd+gMXHnrf2U++ +b+ORFzeeu9JcQugggpHsLAikQuME2gbtEpoGHBwMy8fs+DG789ua+79/5e1vHb75gK84YsO0HC25 +BwgE0DKopYgtx7S11vYrVLnFIIBqUKphcomxvEx8bapjunK8r5dIjdwTUAZLscxIHoFyij29Mpk+ +nTDKjSnwcAHSE4qZomfvLWGgBDcF5my5bSbDnOzj2r7colJnbe2QUKzIvCpxQw/s0GMTRVlNK5AE +IqM7BjSarcaNxzZOPnD2oQ9cfPDz60+ciZe2fHM0GaF1QBiYDQbDwfJKe/Dg8PA9w1d90/JXvbX9 +qjc297x68OpDzaEQZW4MTgAKhAdYQEUeGsRCrlIE3i7XUWuZpVbQlCcXovWKbd/UZgJzTwvlsL2M +N5jGqGULXn6QJOcuaEzJFFk1hdQYaeY0SRNq3bdGGq/6aDV2stiAS2gPN8sH2Q7QrrBN5jpXFIw1 +xC/lUTC7FPpF/fonv49r+3JLS9+n1i/8fW0Hqb1FsjKVExqTOkixgzvUmBltAp3buvTMlee/dPmp +5/3Cucnqlo88KDRheTA8FA7eZkdvXzp678qdtzfHD9qRIQIVAQSFICO8M2uEoTzSOqIFgQTHs9ao +bc5zauYXUont9EHRwkraQH/nmwFtM2ElCdrckzbYwQVZ6XLad+8kowFJeAIijyTIASTyMnTBN5+P +F56KL36Z55/wy4/6lZFWtzCO5uZo2SxzeACHvqN71evD3V/Tnnhde+IOrqSb5HKSRI50S8G/iUim +W5sTw9Id3ce1fbn1ZS4kbceYiB1ifWfUVSg3h0vFvomctgBzRLiMsNAAgLCBLqpzqSMERbmRAzWN +pzQD7yjIgwFuQZShyVkHkczlyUKNIO5hwS5Xkc8aqdE9AFopto0chpz10JvI1zSFtmzohLwED9dY +nIpr9XIkMUf9wckQPAKnMH64O/Xx8VOf1MlHcGpkp0a8GBWBDhZhXsyiASLUhMmhpXh0Scffrju+ +317/TUuv++rh7YcxAKDs6DYg8bWMaYWM59Pfx7V9udWlOhBqQNNOlO2quIY6/3N1yNqBCShZ24JS +PXHmj9lRAXQ53COT+UhOoAuwrpGoBoSbB5nlANOs/8IwdWXukEM2Pf+ZsIzMMqcuRgKQCTcmNXxn +UToFBwyS5AJrk66UnzVvAHVXbbvqkkMku6CTvvrR7uQHJo++z55cDy8ClxBW4eNU9cTCBAalrCdO +KAMGAJwNNIAHdMuMR9vJHf+1v+6PDL/2G5bvexWWU/W7YrjLyWeGGgJDYJ+v7ctXguyRr11V3J1G +m1pnWB/xwtTHNmV26r2ssVRSLvsGoJaxMKVKYwJKabgcycXSWWpb2J05Pcig4oKtftLk9PRU+6OG +Q9wkSWiaagpEyJX90X2VM23UFq5mKRzGDOrgTrmFKxh9ZPzce8aP/Lo9ujo4CV6GbQIjEKmGMCAw +XSt6NcitVGZvqEbegC1ii+7o8fHt3xle9xPtt35Xe+/QGrhEN4SEwoyCCQiQZL6Pa/vylSFz1pxd +9sHOfE39vnw9vpYN8bOLYSaYjtP0o9kTqAwmnV42+JSXqGQNV+FrQm5e5w4KRmSHQbXQZw54M/na +rLMFXYrAKCFrfVvn3JMmNUrdMhEuhqd4/lfGD/2r7pGnB8+gPQ+NwBEwgTpYqV6XukCoRLhNg3QC +EKBUNGVQuk236IbohneO7/6x8M4fGX7DW9tXNy6HJwcFRS+tAqV9XNuXrxDZC67t/SBYIH2Lh53b +bW6llOP0wlELXqGEzu3xPOuKLiA4TRRKmunNdn3m06iDI8AQvRBT9PC9t3PaYKoDAOvYgdxo4sPd +yb/fPfAZfuHc4JThiic44wQUkk0NCcO9gDlrzGHRtwPYQCkb12ANPECNWeuxwebhb9CbfnLwLd8/ ++C8OYrlT17BJSSZAl8r97uPavtzS0ucFuytx13Hkq/K+XfbcgRvOw89uv9Kz/ffj+Kcf5o0KajfN ++9kL1EgQm/rQVK5ZIT4ZN6tjWhKgDpiAjcUNi5+Oz/+d+LHfDZ9Dc5G6rNxidZwrXXIMMLdwzTQt +1mjenoZNoAEIxcLXUr5uSwbEVnFw19YdP8pv/6vLf/BeHO3QBTOI+dwZ9nFtX74ypLKJXfwGezwI +Xho47g5z13PAXBnNaoULAFUrw812fdbTqE6AYvjPL2dQbGZPSBFwMBomYeuTk5N/Gx/7ePNIY+ej +VoURmMqmRyDVFR+DMV90/puDV8r1+mxzAgMCEEoYMoEGagKbOFlq4tEf777xf1z5vvt5u+I4hCap +oQWh92VfblVZ9BjcKL72ysqc1lnfZHEd2My+N/F65xAgIkXCaKpgL2qgye8JuZIOyrF1n+6e+zv6 ++EfaB83Ou0bABjiGIhgA5ToCILDVp6KYwfG5iy1wxlS5kzDClasR+JIwtMnBP6lv/luDH7ift8u6 +FpYcOvt1Jffl1pVtCMJLcIbeOpLwy0HL3f0MxS+bPBicV8puojDXICcEl4s5TEW9zNzpmaucb2pc +QxM9Uk/owv+Fz3yk+ZLZRdcI2AIn05RcJC9uSlUIZUMFxQwlBauwtvR+BxhouV5xMr2ZwTsQsggI +w/jz3cc5bv7B8AeO4XCMbsaglytndl/25TqksrM+Tft9oGEUP4BmegxDVhb2dZd+vA5RDkKBpKjS +R3W7kJqUxSYosgMgqEPoQjyFK7/YPfRpfB7hjPsGWEEtYVYiaxXIvPe33sqKaCg4Xt/xwvVSvv8E +dFBQB607RrDLv8aP/ez4d65oK+UlRGkf1/blFpW5aKm9helvf6SFjVdYqhLar4xWPILqa6Y3/0xU +Au1YuOJ8nNo0qaAkTIQYtugKQBiN3D/aPfUrfPDF9jy0Cm5Ak+INqFys0rFqXKtMrYzHzG2a2hbL +hmf7miy7iJm8n2NytNZc+Rfxg78TPzkKsXODcx/X9uUWlZmk68U62XuTFPil3sYtIpWyMUdwVfco +8HKWVMuVTxLRydF3/edH/y6QRKpFIhPRwUE96Rd/SY89MTgHbAATsMt8asrRKvOKPY7GhU/7Y2M9 +aCusLXk7CUBgzE0n2IlbxNrTS6f//uTDj8SnLcDd93FtX25RmeNo16d+pvCIsjg0bYv0ikoP1JCs +aTZ1+M0t8pslJdAu/xdrkmUvQnAO1LLHAOosmhuEVY8f6575aHiWugIl9XPRxZkuJxZcY89iWBVS +9t5X71vofdTXZAGlLtQRviV29NFn7clf9o9cDFfU7uuh+3JLyqIqdH3ugqTxaQpqt4TTQVNVKmlr +VQ/kbIv1Gw9wmk1ZT1u5ReF25e1UakMlPVSSU24uOGhP+oXf0hObdlpcB7egCHalA1bClmpN8xny +lbEszCIaevssvlnsbtnFEoAAEjRwrGbMsPaz8XOfmnz55au1uS/7ck1SV9dL9BVUy42XZnm3CF9D +qeVdSAgLBC9a0G/oT/eIWHJRpGJ0nI1/rvBX3pORqZ6khBAh0xq6T8bnP948DbsMjYGtnAmW7Wh9 +z0DfWIYSlcayjeIccKDCInoETWX/FmjBJlXqLPXZDRIwEbfO8/KvTj7znM7u49q+3IpyQ8gapmET +0w1Ml9orDHH9c+udoRZQ4EZKBaxc1CQlxRYuNhdPU96xBLgSPffEIU3nfP0hP7UZLoEjaAzF4hZA +r0tpKDpp/TdH0NC70opisedqqO8XR0TluLl3tXIne+vQjv5DeOKB+MV9XNuX388ya8DK7/TaOwG3 +AMBV6WnNyTx+0/VQkppVP2dtatPdotTJKIqMhgg951c+b6eda8Aop39OtU4WUtYAw14uVD+GI9HS +LmeMzpA7L4kHfdNbm5lgSiCVZcomlgwFgpNVXv6wP7Efl7svt6LUVESk4kLXn6IETEu/JnUvVcmo +hXNZC8PewPO/PknRHtV1cDNOqeqhUOqckkoGzwfTIAOcoZfDTwiUSTKtSy/4heftImxETaStXvpT +TX5qDYkNOjAGtvJVAj2FtI/d3sPEyvjqv6KfZj1UkCHlnyp9JCJGjD6r5/ZxbV9uRVmMn7o+aCuW +rBwsVqI9KhuqAJdMb9Vsf/XfKtaxQnOuwSmhueNr+iaL/tXrQndDZWpfgyQK3meFc8HP5QOVWrRM +gcRu2MT4gzx9JVygtqQul/XIhUgGQAssAUueGVwHjIAG6IBJ0TRRLra4ODNxs/KOlQEJ0yxRBGCQ +gY+EOyzAY4lyE6x7ys/s49q+3IrCXoFclaTrl+ISRS5gmHvCF2gDMqKpWN/y+1f9pZ7BLkPSXk6u +p/8WvlgOBchzbxSi5xS8sTJFrlQGiKTgmjZAUa86MTy6QFg9DwKRisCqbzzB0xPbCIyxBpdlktUC +K2/GnW/HiQ1MnsGlF7B5HkNgFdgEAEzKYKBnUOsHc9T3WZTZutEAS1O3AzuoASPQgVFmcLuMbh/X +9uUWlbncqesGtaKuTJddrdCaYthT92Obkq891TurfK3EauyJrzEfvxe1MMPXqrW84t0Nlul4porn +LmGGEdfeK1IqvpYeA2VwpESnzvvaCBfBLeUe1B3IYkQL9+Dgd+M13463CvYUTn8azz6Kc5/Lban7 +FTs4G/ZRBgOOnLrOnvPUCqilf8lpMAEmQAQ20n0w0Pfz3vfllpW5oNzrg7aih8Igz0Hr2YZV9VCf +Zmgi1fFX6fm0i/RxDXsOjpuStMXTLDiW+soQKla/G8/b1KviLZMhb+ezKQAnMFXQsOJscZKgszvv +mxvaBCZKqMSKR0Ng8Dbc9h1425vx+nVMDuLYcRy/DU9+Eb6FLWBzFsKqEpoV8KJ7JvirPC4xtQGw +AiwDh0qBtgk4giYAU5iujMA+ru3LrSozClGPR1zbQQDmshKpT12/ckaGjJKb2UeQ0pBgZ6jq66G9 +7T2dT013761w1hPDlK9VvLvB0NZzBSSAnxnqaR5VjqxLPf4IkUjtoLCBbqIJEJVqecvAWM2CJ3Dw +1bjrMA5PcHkZg2M4chcOHgK38uXEglzVqojZwF3O/lOBtrYHbQPCRAeWgA2S8InYCR1o+7j2lSFz +vqpt5fdNbbIk/evtZyxekxR/KFIhngJhQF4x1V2QoCQ1RlFqMoBdoa1iWYGnPZ3cAhrmC/SSSuVg +sWapl1N1g6GtohgBuGjTmdO3bCIxO8JhAkQFaRyis+ksRo1RAuBgSQll4nZj+HM4FdSMGC9q8wk8 +91t45hwvQ+vguPgHuIBu9XpDzx9aldbQ+wfAWgwOgltYWueytARuABNqSzHs49pXhkzd8zvLnDNr +24N8ZQHfnHHtOtCtl66UrWbohXQkK36xG2WQKm2frmJl6/lDkwJ7rUlaM1BVaBsXkKya0m/kXeu7 +m+cOPJ9vQDqYC+jCnQrOznwidSlgTRPQoVQrTZCD3Udx/gAefC1fGOjAWV78EB7/FE4DF8E1IJUw +8gWXKAvShXLJyZ/Q9D6qA5PMBbgbQWguaDjWilk845cULwLax7VbVHYhaIvW9BqUv/vKXwxQulln +f+NkThW9xgrg6q0HA7xnsAdmoIJzumRRS6/O1/L+O6PaTNIlKlBV69L0fzZjVO8HndxgaOvrof3U +silHM8thgyRctGJfy7U/ZAySpWZ3uWBKKvDNMTB6Xmd/HhsreL7lcOKrZ3WOtiGsA1uAgw7VgkVe +rrUGSqNH35DDR5J1FBNwC2rBAEwctoFmGeEEw2G0VLNBrvkIGO/j2q0oi0FbtV9G3WFxI233NYi5 +HObF8gy3PoPrY/G1n23fWLMXXEjolMOiULre7UnB7D1g5s62f8JFAyW342uzumcF5ZpBeXNvk0oT +QmCWIyfiKhmReqWSOMrlpThEk3uxwh0BgKVQNTKsY7KuK7mhgcbSZk6MtxrpphkKNh2JGprrJaTa +wRT4VuoDSIBF2obag/QhwgAhMBzRcI1DxLiPa7eczIHOtu/v/sVF1EMP+Lb9lVsW2hbxHdfANCvf +wezGNnvWnk/I+uDVXZzbPjn6p7cYpJI6JPcsa/WOVCNd35nQ55s38QYl8thH5FzDA2IOx3UCVHYl +kDrhS0e7lefahDIORTgQDCIwkTYAEKn6UScbg2MIoBXfZa/YJEOhb5UBVy08QgZ2gKDR1KKQYbE7 +RXXg6xAASDiK9nkR2Lev3XrSt24sItG2UV39RbU78AEvkQG9AvIS7GvqxQ30S7MuSl6xKTqr0rTd +cW2RoyVO3deaU/zEdJxzTCx6Kun0bAlo6hWdI5g35R4ljdhgDp/CWT1hULROImBQV6rWtp3u4IF7 +cfzhzsQAt1xIUoQiDNAYiOl2AQ7vwA40qIPidFzzcyf1szdYGpjU0yAUvI3Z5pmNmQ5E5DZYEyme +pSi9FrbENvoEAGwf12492d0JOPPw344XzDGI/nb/5eIP7SSvOPZtC+J7/GovLRS7qqKq5v9C02od +oZ1dB7N1ZedY9ty4zdyjKT+cO/aiD7Tuc4NdBygYWtNjF5+Oyo2p5ErNOZEiPkQ7bAfua25r1U6i +FcXaoTFAyKadnVVqm8NgEyDmCOiU0cniuckBhaX00DRvlKDDOyAAHTxVyu2gLtXtTbf3DMcbvnUb +Dlxkh+CI+/Frt56oFzO5mD+0y5Ke+2jbb/XnbtLp+hRjp/N5ZTXWutKuPQ2+RlQQOchjJ1Gxw1U9 +tH+Enb4jM+t7NnY6/z53QwHBuUMxBZPNjHAf0XY7kevAPkkGE9yUwCa5BjT7/ABlQorus/Q1mnf0 +pRDeitsPdUcu8DyInGZqMUNSLXaXACs5TB0Z0TwCgKUSQwECSkMs0HoX4UiNChLHZcwKbxQghPoT +HTRZ49aaNkGRWyL3ce2WkJ2e8zccR3bxJOx0VnOgtgu5u0nA1z+Nazx+LUJbo8x210NZsg72lhS1 +6y3b6Z5ue2f7tG6Bp1/9RPa85+zJU3SmLljymihVhkiKsFx3kkp5ZzCaYIxBzd12/JAOXRCIVhjB +k1fUy/iVwTYHHQ7A4UWdbANC6eLuEREAYQZZZtjZ4VwyuBIUyvKvJBXVLYcYSrAJMZIbOoDtPq7d +ErI449Mavu7G5nv8Rcwuv0Xpa6xXha2bxOwWVbm9f1XTRVYN0jvujG342lVObIHgcO5sFwch0bfd +Hw+4tkfa9fA1ki43WiJDokPTS3B3mhGQKApOgm4OM3rj7gG8uzm81N2GbpnNWG7TNqCs5aCQsS0X +DSlNnwMQWqCBAgxghDvkaJscOEjkeN10N1SALGm1CDDLB0xWUAhqxTHYkgPtx6/dItLHsu2e2Dfx +R3dafv3d5v72v97fs3+oV9Ae15f00L+WU9nG6LWTqGR6oajzOwF6/7bOwd/intfu0rlOPZSiTHQE +KfYyYusZmjvgLnomT3R3yMgAdEds5V28/VENXYKnetyWYSiFNhOQw0POnffipSDBJjsK1CEWJdQ1 +xcT+tQg5ZySVxnUAEQQU4RNY8qjm1jfOcCDiZtGBfbkO2d1jcMPlqsfvG4NIZAdZEfTALr2WlFOp +8zvqw2F+6E61nPRNCLqq1PO5FrJ206VCT0a32cSvOaqL6UhuL+jZEHGN7pGFjT2d/DSawix3resB +brqXBpXeKqLS3e8C3dwPYuXr/PYD3UHEFmoyMEXP5Ms7dBGeNoQu1fJIjoqQUw7UYTJGrE4Gx7TJ +fIlTS1a55NFmUXWzOyICyYcwBsZgB0VEv63bzw+9NaQ/7xfXwyt7VulcSIJSLyq852Ks8UQZ+2iU +pyiBErGVDVb5DaQC0zVc62pX2R+Nl1I+d/Fo16Ev568IiUWgQhJIYz/CTv2NMkA7af2L6vaeNfrr +wbX6Q0kbVYl3nSr79dSh1hVpkTIjHR5Jcmjta+wuGx8DTiNsQC3UTat2JlQywj2X6mYZBndMHAzo +HNERWkQDgNDrzAXClc1tipnHgTAhpmzaEv9hEYjQJO1P+Bvt6D6u3RLS101U3KAvfQHfIJmSNSA9 +tQHU/yWlISMgSeUCEbkQRF8BQ0Y0ZMdfjh64WgxGz5J1HTC0/fVcTR/cSWq1sqnCWgLTnKJmHk41 +hILlRUJyYpv6Q+rZIvqe3z3g7/XooZi1KoRUQTfdpT7uA3Qqs7Vsygo+GIfYqLt/cOJ+3Pu5+IK4 +AXQAEQUrea4s/JyeexEkOpb7I0/AABtk2z9qy5qSY+ZhCmfJeVstpVJppzCBB1gHAE5IQ2/e2d65 +j2u3hHDW3H6jFvC1inZjE2nSp3xwr1Oc+ZOspZAUgJi6F6XsZJaSjTTInfk7OVAMohBR4g6oKb/Z +5vRwIzjsIl/b5cJ7IzDrEkkYkK9RRjoglWynpF/nhM8ecCfymjgJtz8+ClmrVYMqVu5w7S+JryVD +gJFyueAmlogPFB0iK340yUnSnCFoEl/dHvzBweseHD0GrgIjwKCQ60IFwSNcuTZH8gAAkBCLspkz +5y17AHLB4BSFm5idYBEmeEiwlXMfWNymEhDhE4hwwXkPD3yzvX4f1155qROob53BzVRCd1rAOywe +SczxXQaXTISRnoImQZDmEEzmgEPBjIZSIaPoJZwrWuvI2gkj3XMIVV36XOQy16057nTtVeXfi7rX +x7606C3V6EnVfqRa/ygr48g1QZihvJASqdDcbaANvfvOXgIArs2TcA3Sf44SsHSBZvRqIZWBFLoU +EyK60DoEG/jSNx26/21b9z7s54A1xC2wy5m1KZ0TBLriwXQkjgWHGZjIHWGpzBHz1PAU9VYrfYTs +N0g1nLxfDYAAYRFq4RFSUPgue/Ub8FX7uPYKS/8RXd/BTZvE2BUXdmaLynqoO5MiqUStZG6Ce0cG +i0GEEYiahCuXfO2cr17oLp/W2nl5Z82AzQEfLjcHj7bHXs2jr7alA8ikh6USWBBksgprc9riSxmT +XQ7Vv3AsPFH6jCnpkO5OY+IwTA4TFssQScEpAcEByJPelGNIkCP7bccw4UWCdlMp/PTaAZJBiAnL +sh6qbE0QiVQ2XLRM0s39rYM7/+TS2x/bPDnCOroRNEELsCt5+pNsWaMDKeBDeSNhWdI9lX+q6K0s +tYyKj5UEmvIYKNUJUL/VwZcBNjj0rXjLcTu2j2uvpCyqPzcP1BYVrsXVUskIejhbxSVTwrM6AR30 +LoQWZhG+fsUvnByf+qIuPtadelbnvqSNJzA6zYkz1xI0DTgaDHTk65vb3jx4zde2939LeNVXs2ks +wuEp1DIpo2WGz3C0lwhqc9S4WjDnLnnx2qfMLseYko6Yww5kQnYoenLgMaWJeII+h+WOdoQEy5H9 +O4UJ988Ts1Pi5vG16TxkKmxZQs4KuqV3E8MmooCkCh7qBt996M2fHD3za+MrjKvSGF2HJoCATXIB +3QxtgteotETdS63PTGizBSO7DgyIyrpn2idBYDWxZXMF4YYuICz/ab3xa8NbDsfBPq69kjIHatVO +fGOn79zzv/7iYtWjTCUw9fExG/+zgV9ItjEDhOhszGS2GeOFL4ye+fjk+U/r9ON+4UHbvKgRbIwG +QIQ5QopPYhRhHHdnPzh+5oObX8DmbW8Ob/y+5Tf88fY1X8eVQw6hcyQddnoOU5vUdYzM4uVXXoZd +HySLT50ipBCTF8BlKkvVLDTTwKmKWtVD4Mm46BKS8rq9I1jFTFnPrU6Mm+dK6l+sGSmDFKs3AgJT +mVpJJgTKaZCipDe1t/25Q+98/NLJL9kVbm4pdsAEweENAuATSEhNrXIGvWCWjKrZPJE006SmZkcL +p86QtENVPNOAJnVVAd4yDtWEN8bb/0Tz9V+F2wBdxVa6LzdDdqJpuPnqZ33mb6twFU8Aat+5VKkm +IQpBV4rSckoW4JPx5Mxj/vivjh/9HT/zhbB+jmOwQ+hy9UDGVEA6r2wSXgLFowEtYkA3hI69lvf9 +weHX/sjS/d/KpWWPE4K0kB7KpEFTa9Qcl9m7Uay+g+0cNYsQVvBFyM7PqXOzPBlESU2AWQBinGhz +pMubuDKiq4txsrXVNC0PLzeHl8OBZSwNmRydALpIpBzJ+fPP5wOgx6NZshRuXgpK3yQiyGjJJe/J +iZCwVRDU0czhcold8AZaC5Ofu/zp/+3Cb6z5E9w6I66h7RAEc3ALdIQAA0LK9yypCHRYAIlgMGWj +G4rtLFj2hGbHQhqQgJrDgAYYMg6FpYM68df1nX9++Y8e1YEOJVp6UW7eAvv9LYv6Tn8M+1OnfnpT +5+vcM78PoHOnBBRYS8agYk1KBn4A9ORxcgMai92ZkxuP/rIe/xU9/0Cz5hgjTIyd4LmVhxVcK9Hq +yN5Uy0/fmEo/mHUDnwwxvv3e4Vd/34F3/Hft3W91unsHNEYkP1k1SF3V1rbtLehrmotwti2u9VUz +SJZLCOXufE60NJpp3PmZC1uff3r9w4/xy6fGZ87w4hrdY3QfdwyNHxkOjx+z+25r3vIqvuFVK2+4 +t331CR45mA1zMTLRE6PcjZZDBHMLlJkr3X1JzpkUtp14u39xTk9PinVyhuaANglQpDHCIYiduRAZ +whVt/aNzH/mZi+/vjBYvFwAAIABJREFU+CTGF91HWJ7k8huMMIcZAmHMcWr50WdZtU3QRstMLdO1 +psTTlIah6QNPSnAwLrkGh3TiL9m3/eX2e0/gOBhbH+yWGLjL+tyXOdmWcM1NF/RnzHaphTd8kCtu +psPOlZ3Y5ueUfU4iJSbeJir1ZJRERTIEcvT0R7tP/dPJC79mV9baNXJCbnkzgRMQQocIMCZ4LPW1 +lKsHGhEBJxyIREhreMnGS3G8jOberwvv+qsH3vJDPHBIMcKQghDQKwW8ONRzY7g48ossbxHOFvVQ +kZYUQiNdkBSIKDda09i5K+sPPRo/8ejoPz0xee4ZPnuuw0VgrcFYcEJEm2JSHYOIYRge0dEjducd +g7fd3Xzj64bf8IaDb7tfB1YEoIvO5DyBQ8nIRYlmLpdfJdRuJ0SbY+XXNM1mhk5yo5DT4010F8gJ +nAJEMXatRpr80zMf+enzvx79KXarakZoIugwR7MFI4Jnk78RiHnDUkQuMsylfPgc6d2mOwMG0LK5 +rQG6FhowNIrLh+KJv9R+y19c/p5X++0Oto7A7fjanD3iqte/L31ZfB5gYWLNjfnLYDFJG7XP0M6/ +KBcNckoIJgnR0EBwdCmiNIibj//m+gN/b3DyQ82GMAphFOmQgxFMXqzK1wApV36u0UtA8fjH4gcj +1CIsWXdQ3UCT44f49v/20Lf8ZHviNR7HTlCGlO2TDUDTdnCLA9iHLSzchTmkm/v6zJMmt6ADoFij +4Ak2bZjE7lNfvPArH918z+f19Ith65JwlryAcLlRNMV0lcwpP2YMLqMbcNcEhx0HMTzEE3cMv/NN +h7/7rfrWt6y87j4B5u6eonzBVPnMYJIDdjW+tu01zrGwxcu86uTJoyehmibziwDKlc2AnQGdQqsN +m/yL85/9Z8+994nxF9BcRtMhdLDNHKzbOMxhBJRqeSAAZnk7h+9a2SY46KmiKXItIV0LrcAHr/c7 +f2Tp3X9x8O67/MQWxy2a4KYgxhi3vbBtL3sf7HaSxdWC2dJm2+pB/a/fDKaW5mHCssXJvd3Xkh0s +zVYzCIw5MIsdYUZtPfahjQ/9zcHzn9IYgw1yIkuOTIERIeZcGjisl+onFaNUbcGhXMfBk1aRiqQu +AQfMl3zzmPEtP3r4u3463HafT7ZkJC1d0ZzCvot1DLND3b8F9btzw9X/bk4XQAraIF0WrAmNP/bc +hV//+MYvfxKfelrrZ4kzjT1NTOQRs2V52esWF5PVGwYG+EHHXcJhxwEMj4W33XvgL377kR/4Nrzq +uCv/Wq7Qk+xQqe3p3hTJPqvd/cL3opzOPB2L6S29SsF5KU62I4LHCYUA0j609ug/fOI9v33lM2jO +YGlCutjBRgiFvQchAI3BIkIAU9up2mXQwQC1sDR7AhiSQY1qxRYaQstfb6//y827/9jSuw5hyREH +GgQnmPSL7exrdU7kJoP7cLar9GfM7gppPzMGNwHO+ofdnZjs9E0AIOTJEQoJMkGRIAInj39063f+ +V3v2w4N1YJwTYswz/zLBItBlvpaWZFqcqqu0dAdXhAsgQgc5YilagyV0BxkPKC5j/Pb/8th3/91w +7N6uG4ENKYDGJtXNMVqNRejP2Ho1c1rntqOx7b0r3y/1wwVGoQlBfv5DD1z55x/ge7+sjReBswM8 +TWyqmH+qS0HlZfXqxfJmLUkeeZA6EXEMOBJ5bPidbzz8U9+/8ofepUHjXWfGrAXnanBXoVfo6elz +emh/iNBb3dgDtFXtrd9UNH8KpYwAwuRym0ANHI1JbfOlybl/9tQHfvHM+0/pJMLEWqkZSVsIQoig +0DZoDeZoU+hGSZlCVUuZu4V6IBuwlbXwBjj4Ktz544N3/tDg294Y7mmcIoOHxtE1sVFobGc9dHEG +bCv7kNeXquvVl9tao3HTEK1/Jv2NPf5oSWuXcsKyKwY0Mk2CDcYnH9z8wN8IT76vWYONwFgMZA4A +lgCrg3U5+jIpoclOMo09SqvUEQQ5ZPAIi9kcpQYK0BC2gq0VjA9AX/cTx7/nH3Ll8KSbkIkAMViy +v0xnZt+MOKd+1nHYdonOsJgcOseqdqVDK0aE0MhX3/Pb5//hrzaPnOaVF4VHAlYTzyijlwla5abs +vWmlG7B6jf/KnncKR8c44rffe/gn/9jRv/IneOyouphCYznH1yTkggIFMhdu9PSKtrOsLUL/blNi +OxPk3FNEKRnKTQbJKY+GgbWr7D504aH/8+n3/+7ZB9ZxAQfQtBOnZGOZwxxDYhgQymzIjgHBAizA +DAjGIa2JJLA06JaOhbu/O7ztx4bvfOvwTUe8tagOgWapz0IKi7Zd+NqclpQ2FmtG98dr9wH6fSzb +KqG72EFu9lgtgtqelFDkR3B1hQKQIuShCd2ls6Pf/Ft48F82G96sS2MIaIRYOEkyq7EDu2xNq/kw +6WySSuGenaGpimrXoBOaCAnB0QXEgAaIB5L9hOsHh4Pv+htH3v3XHe4eaYOUh01LUfAoFUPy9S6a +MmsRAcx6HqqSXketf5SiOVPuFoLF7uK/fd/az7xn8OBp4YsRp1ts9EeuuPFQKOm0RH/15MUCZKUA +Y04ySntGHoFOdEt3D/70Hz3yP//Z4X33sItONwSmRp0pxSGx1gVQq8i+aEJd1Cjn5skeJ2T/ydHj +hnDlB6FEN091xeUwMDTN2cnqrz3/u//yuQ9+7vKXV8N5LBuaGGwMi2qiVkwD5eC1xNpCYAik0Von +ZS0wOKoDd+Hudzdv/uMr73hn84YjOBTVQTCRCIGACZEWKAPkO8Z59EcE263G+vSb0cD/s8S4fvX6 +bR2Ouwzjy3A+V6dpU/Nw5hhZHUWExaDg47UrH/7HfODvtRc2wxowEZUJWlqmtNLAu4N7tpZTqCnv +Ym5KnN5vUvCHw1LoOoDiLY0GGNQAS9AKJ0sYHT166If/+fBrfzCOx25msBjRUggkiUSt8glv47TB +ooK5uNSJYgXMPEQAGWKMobHgkwv/8tfXf/o/tM+9KDzheKYtRCygjhnQo2DWe3N6X8pX0EO3SX4/ +jQ2E48I9+PEfvP2n/0pzz+1dnDQMOc+UrFE4qbbGovUwbe++ZusM2Va92Hag5o4/v51uAwSZI6em +S6LJpYYtDc9Pzv/2qS+899SnHll75Pmti5fbNbQRbcSSYSAbiCSCEMwtKMWyYQA0b9Dt97Vf9Uea +N79r8KbXLt973A+EqI4kNVBOTw5GpjjHnNahq+Da4rXNQX5fEdh2B/xnAHb1qvdKi27mmSy+3Gmy +LpoCc5iHUmQSqUh25MrGI786fs9fac8+32zQtoQI9xxw68x5fiFZ2RJZi1nzQs7/hgtdrcFVqIan +5JlY1n8HAW5AyKYVX4aWw1YTt97wTcd/9N/YiddF3yLM1TYeZYCZEbRF4882g7Ctbl52SmUlKCpK +QXIaHTRr6Jf+1Xsv/C8/f+j5M+SXo14MyVfZcwugwBkLYNnUNDfdqBfet8QVJ8p0h8i2G75t+Gd+ ++Pjf/m/sjuOx64xGGCxV9URxzM5QNhS0mluJ2979xe1FwNqL5ONXjT0FA9Ekh2BgpASnMzAgYCNu +PLn64uevPPup9ae/vPrUU+NTZ5rRRjPe4BaCo3WQCMv3tCu3DQ6/pr3zTUv3/IHBG7+mfc1xO37I +B3CM4W4YIJhAKl8tkazWUhmEveAadsZyzKo52w7ly8xWXn7p49qtcIHbPo13kRlcTsxAcCrIrQnd ++Wcvv+evLT38q2EN3FLTwWPuEpmyko2lwnMHeiqsgFBqNGT7b9HzVMzmdLjBDcplGwDPhaARIEMQ +4gBxGT609QGX/vD/dOR7/kYHyqPbIMLbbCsHWZY6p1fU39jdal6uGiBcMMAlAjIOGlz4D7+z+lP/ +avmpJ8EnqLMONLlCRca1evp9UOvrm336VvepOEgg9qCtbAw1fPvK3/wLR3/qxzgcTrquQesmWo7s +Sub6ZK3c1og2R+V2ebbtXavYYQcpaetGprzYGh8jRUJEQDJNeDCDGYAuTq5MNl6cXHlhcuGF8aXT +3doWJ5MmNuJxLr+mOXrXym2vCkcPh0NLWDJ4p84VQupPRVrJ1Kj0s14ykKwie8O1q17kLnro73st +9VbAtZ2sJ9vaWeo7XDS3Q54gSx0RSF/9yD/xD/xUe8nDBjBBSB7PDiTUlL5oDgkoljWkYg0F0dJG +9oqiqKXIseXpV1P8hyLo8JDf6QI4gA8Rh1i/qzn2535neO8fmIw3YY1M5qAMJAkGLQZCLGZT7jQP +K1FlTBoQ5B6Whusf/sT5n/yng889aniqwalKvuo3K+3qq6Jz/dn7cFbfr6Cm2X9dOa5rOd75zYf/ +0V87+qe+Z+KddeaNMSUXpbaeGdbm+VWah/3n2SIYzanh3NmPjL3JPAhAhOUgGQKgp1IGAuSkwRim +NVuSEcIjaQKBqJw2J08R3kak4lgyGS2N3zzH7E/47R/mKq6iXaTuUFX6euj+p9h5Mu3LDZS5udiv +Rp1kTjFhidStn6aj5C/RTdEadi88NHnoF8KqcwvocrGZ1CgjDuABQCk63yszk/JkrOQClp9ANWR5 +ITZpNwYYYQFsoCbzFgHBMRhhsIUwwvBUt/bZf8PJJCVUpRRUhyAXpIhUTKM/6/rLuF7sdqCmZFyT +EI0OIXozbLeeeerC//7vwuceb/Bkg1NppMJ2g6/Z7cq8SjDydAfO4lqfU7CGqQJBhG3i9CdGf/eX +Vh/5IpomBegioovucGO1bPWJ04za1L/pc4+0OVCrFG9RG+0/BXeRehYZ1JQeFVmxT4m0KbgtwRLk +Do8e3WNyOwSxdQQHhQDQHVGB1oTQmAWzQBhDeuj07+z8r6eQl/7HFbPmLnUnQeaBU6SrYyOVytC9 +Xh71J5DmX3qJ8lJ1Wk5fZBv2nsb2Pzvpz7n+w6Peu22fK/0nU//97Aatd4ltjHH0yPvbU5+wLtdZ +SDVuxRITntZwqUGPEkOe3AWqUR0F1IBsGw9FDWMDtmADDaAWaoCAUhIHElzwDtah2cT4wX8xPvV7 +bViCTzrYtFGKgJSYj/nZu9NGf9z6w5J+1RvGbnTxn7wX7/tkg2eA09gGsCgyFmyKvU+r3a1azdRj +ef03Ocvaaoi8IDoabIwe/MD6z/w8Vq9YIHPTKDrgqegwqsJXl7fmrnTx7tf73v/bfzk3Mnufinln +leIruZugeeoTz1Q7Pk2fYLRM2OiplwFJGFPOVMvQkoEhWDAjTaHUP1jEqLlrRMW1/uX1h6DXXGhW +XFLpT1MeGvn96PLcuCbdMysGPaZ2NfWjdFqlCH7a7onKhwJn1vCtLC/neXKedMxP3/5knXmulCf5 +zDqnCriREtswOfvE+Mlf4QjsAIelEFwgGromr0YvK1gAmZO167/UBhdFJ2XSN1VK1BgQ4A28QdcC +LdgCLXwAbzICuqAJ1CE4hqe0+uC/FiZkiiuZeRBCcqUWvjPKRB2KxaXbf5l2aJyQrG02f/f3up/9 +WIuLxpPVCWAFjDpgDHVS7AXcVtiygmJWSBl7cMbezuhpr0wh92VNJgPlgKdG//4/bv3HBxRsHNgh +wimZO5ws/KCPPtsQrrmb3n/a9edPnQz9+N49zuf+qGbGRqXEu2wH9MxTMhonzCtuYE9zT4CUdIaU +2F4hCMomXM76ZxdvIsp4znCkmT5pUg5NkVgOzzSBEogxoZunb5FkMDaBTZgGoaQ5HQJCUDA0AWa0 +XF7K3R2i6JLLY4J4d5dclJdSnbNE41bDuP6J7X0q3JDfrdt9pqYFSoLZ+V0X+cyeuZgjTTKSceJP +fqQ987C67N9MMVOBYIACugYwmPK6LVMXxlkzeMxOUnco5gVd6mRDAWqAFjYABuAS1EItvAFDXhTB +YR3QMYx88qX/FC88a82AmlBltuQJmPQHzV1vf1Uvvq9iXZJEMJI+aHXhwurP/CYuPgs7jXKBKNfU +AYStHDpx6O67h01TwatvX4uzOFjvUx/aKgFEb6MahoikkUVceOL8P/8FnD8fLKQijO6AHFEkaSz0 +oqzQ8rjSLLrVycAdFpR6WNbnQdchCaTqNDOlNLl0qiXaOJ0ujMxt3rMTHuVqUox0ilJkMZFwSr92 +4pKSmnpfa8RT/9oEAO6waB5Ac+bAFIJQ9FTdlDQzQFvRL1zqXjzjpy/65U1b3/T1kY8niLRBo+XW +Voa47XC4/Wh41Ylwx3EtNQAEde6UctxmigaI6TXSE9gWCgrOvXxlpT/E2yLLyyDq5YFqtg1lnab9 +ZNUF8pJN+hSkCZuleOXs+tPvb9e3BkkJdQTCky1MMEspgfCYa6eGWCpjCZikcckRHiitNqDcjdIs +PaVBQiHTlcisw6aMhfTFFHbCCYIkgKdPrT3+4SPveh1KoFKuHpQsH87UJEW9p3p/Y/G+9CNESCp6 +a836Rx8effDhYXzKeDHBVtIQq+rtbdN+49ualSacvVOf+8JkY8QeMMUFPbRG7eYfnb13zEN1CFhL +VRYr8JmwxHjlI59dfe8Hj/65H4oOh5LTEZ4JD03uqTtEvuGYpVpzzzz0FvjcFKpjtW085p6lluwD +UGCEdUbkiYZSTw9Fg06V/+oHGdbqV4irXkK9imbu4xm6nswNTpoaEFG0FLlDh0TQAkCOxuMvPzv+ +9OP4wvPjk2e6Z0/buVVuTeKVCTYnQQ5FI52tWaNm6Pcs4b4T4U13D9/++pV3vAFvvBMHlgPg7gIs +TXZzwp2CmOpezd2tbejGKyf9MdzJOH2Tfnfbc6iTGL05vbjU5w4GJlRwUUZ2F07q9MO2JY4ZohQR +CTW5HiRCakELTWBdDuAwZF6W3KNeA/jT5I1ZCc22d4Mzx/RiAIWspaJBnAC5sSjQAak4/hgGs/Oj +8dP/3t/xZ8GmwJ5maEUOyLfFedJfFXnf6fsA6B45CNjcWP/5T9iFJ0O45KVzuJfADgErOLrx2iPL +3/H2bry5+cDmpBpzypX2fQuV6E3TQvPV54+IFeJ4wIpjSMQhfIyLWzhddVtpfThevfKvf2vlj31b +uON2bcXkBBbk2Z4DsnTBK+ywf7v741D/9jf6U2juAbDrNC4mhoXtYlwCcgXmdFa5wjs191/5yjRX +LPVpnOa1pV0y/C1onf27mU6+qde2XcBHAtFk00OgOd2kyI6haWDx0uWN3/ti95sPdZ94XF8+xxfW +gfEAa8LIMQrYCoiOaimE0AgDfqnll4bdbxyYDI5tvvOe9hvuH3zLm9tveQvuPmFGxY4RTnpAKBU6 +cwve2cWJlws+rir96VJJ08twbts+cuvd7e9TMXdn9i6ksCOCbkTcOv94OHeRYzDmFrQpTd0axGUo +gEI3RigZUUoZfsoduKWypIs3n2WJ1/r16Vdl4BA2BBsIiCNoPA2X8AgCauBjMKLdQPfkk93Fx+34 +G+JkVK1JSu2s8isQM8Er9dqrzjU3aHXwaGH0yHNbH/980LPSVih4VEHNgeXXvzq+9vgYapaGWyfP +jDc2BuVaAMSyc/2iMKPJVi5GwHDMcDd4wDkAW5Kxmzha4FwCwAgEOLGOTz5z+UOfOvqnvjd1NGFe +VxkmyNTZOHeO6SPX3CTpD0J/kmw3ILuxh0Lu8x0uj7D8vSnpmv4KUfha/by338xXZt8Gen966Dl/ +E/t3vJmjdjP7UhSdnrrPOMUItxCCxbXVzc8/Pn7/A+Pf+px99pytjgxj4TKxJqwHrAdsEuvKFXzh +CIZogGPFcZBoApZ9fEf8+PnJxx/d/HefCN94/4EfeNfgD78T99wGc1eEDJFutfeMk9YPX+g/gV9Z +aJubH/3n3svzu9hZd1BPP931fJQCaZ3RaPIYL5/E5joiMJZijikzAQcwOAHcvhSdk/Nbft6ty96D +pDelVKqpwYnZRUDm5PacqICyxA1owAMIB6AWYQt+HhOHLQEONTCAHQCo8wExfu7k1osPHbntTSNH +NE81PuTudJKWKm2nYNsFXQyLk7y84+5mweSbv/FQ99SjoRmxm4IRCs+KwFbbnXjH2+Kou/TQ5yfP +v4geF6vkbi77HbMb5aUJR4WDzZ3HwtFlrLTDlaXNL13uzkXgdcSTQJcAcQhM1sfdZx4N3/vubjDk +JEfB5qcHszm9PDGULneOqwIzPCCBG3vFQurM8VzGMl974hYZjYsOmT5kUa85w9dePpnTS+r7Tf+S +ktO4PkpVgsWTJcQdaBrK/eHH1n/zI6MPPjj4vWfD2TXbGgVcFC4BW8AVw6TmkXRAk0NyYgdEoMEG +sFHG4CIwNN42OHNHfO+51c88M/jtz638+LsH3/pWrQzURTAoFVTKN2kbc+YcYd6LBn6Txhezi+ea +WNucinRNZ96n34sP2L4euoutZBqSIYDQZKLLpzneZIonEjSBB2gJdgjhq4/4/W9vBtY89fjkd5/f +uoQ2BbWpJEVZDkADkY7gKBXWBBmknh7aIizDDpsOHkBjdG9t1RMTiBkBrctl2oIMq6vx9Oe6t/6p +nPckFCYpAXLV5JqqYM4xlMVJkj9qDGtro88/DDxN31AhX10ulwMHWmDy1JPrHxxOAjYfesyujFQY +WZNHcqqQetFJK2PxXiAIcUQ4pKUl3HGwOX44No03rb0l6LNjrAHoiBcDthzeIRKb8Ynn1p96bvA1 +b/RxlEcZARgsKUMp981YVQcW/+OMOYL58lG8qdMpVL4oQKzJsgXasomL2YQqoCTfp8vqq5F1HCpr +z5JRdC/T+mrSV0TmCCYSX0OB5Krp5n2yu9ZSF8SmbbqLlzbf95HRr3zUH3isuXABqxcDTgubESPD +uD59VaoUtOUGs2d0KH0XQFwwoNM5w4vB7mxe2NK/v3j5i6eWf+JbD/7Qd/irj8exGwnCXWDKbXVA +KV1jF510Jw385kl/wVTz/N77S82dNq7lzGeeTNtRkjmddPuDpB0BSDBTjFg9yS2FTePY3dEIEwcd +zQp0+L7J4cMBke1AQnCaZEkVTQdKOmlZ38kMQQKWm9sCmcmn2kRYApcaX74fYShE8PkwPuUd1MEi +FOFNbpUgtzBynvkytzYRCE8VJJRmASF3pSegWapZPT+w/dGePiATaTEbv3hu8qXPEZdS1cQacqEC +agQ06lY//nBX1jR6qeyYzu0ZT2ifu9XkKiEELDX3HMSRA5OVRmGA0AQc1F0H/LGuxe3CIOIUsE6E +iDU8f1YvnOdb5B5pIToEmomGQAtCzklLzmbPfbyI7Fgk6NldXXle5VipOAKkTB5UK7sQLjeVhmRS +QEa3Uv0OTK2fC/jNz6jpSBA3FNTqRl1idSP7DZKu7HSC9DQx5EDIcZpuTTN59rkr/+yX8YufwLNn +lkaXHefFU9RmOlHruaj7nLzeV/Y20lUGJEI7cZx3XzW+gK03N59dG586v/rM+YN/9fub++6ME1dq +0Zrsj7D00CHybcq/WKpWvFJ8LUn/BBaBZic9qH6EBaq1lx/tP7iueno7HqTHMoz0rvONC80YiOZb +zggRGCKO0J1DeOaxZrm1ydboyyf9Chpkm7WUaxBlc5JQNZZEu+g5iLdEJ0EBNoQMzhWGZYRlUAz3 +xsE6D66aQx0YwZjNdqRsjPGLZ7rxBa68yjWqzSVTb2IpSg1F96o4zdyauXGbfgqYwHNr/uKpgE6w +VGGk5q7X6xJAWmKH6fs1uarO82pQiz34q1pGyFptWLrj0ODOo760NLYBOBBDOGCDu24bXXKcDUQQ +IrBkGAChe/Ry98RJ/YGJ5JMoZ0h4RacZOoMZDYI85SYkguXMBY0RQBddoHmqHArSKUqMgGVDfz1N +TzV/pFShIKmtwsTYpNgrKzEZhKnoqtV9QRQFgDMegbzTbqrr9ha9BS2kbiQa0V99WQ/1VELdBUow +hzMTWYqypomPPnnp//h/+Z7PDE+eF86Sz5lGKA0G602tG/UJVs+dPZNLby0lLz8dY2gsPCze17y4 +Mf5/1lcno0P/w4/ynts4jrUUTSo6nF0rWcWYtlnq/32lZJEabKsEbfvFnYwFu8vecW23g1RcS4eL +HbdcE6ATJ4jjnIguIp7GJG7q7EONFE91XIe6rH4GL/c+Tolb0j296C/ZspEeeg3YIgyBAdyOGZcs +rHTwrkG3cl/Qsw2udMUkl7JHDXIhnj8b18/zwN2sBqYUVulKPRAK7xBNe225KQHaOn95fHZ9Kaco +5pHxgk2xopWyebC/NL33Tv3K3Lros7YUqh4teoAQYhOsHUwczdHDy6/F4NCoO7vkqxbRCu6w7sLG +xU9+qf2eb+fxo3EymRjoaGgWA1sZrCNbpfpPnqlLLhsEJ60DiAkIKSTmItFJysyYy9XWaLxStwAI +IJwuucHA4AAmpEUZwdRzIulQTlmxYzlglMOSKyrVE7DiNk8mrp4Dqd6EGe1y0TjT37m/WOb+Fj0U +FGUikJpU1+nuDK1//tEL/+Dn2t94qD112vF4xAXKm9kHUT07zj7c+ncaZdhij6InFDdgAjRYN30J +uI1XJuOf/e3LYXj4v/8Bv/dOjCOMcHh+QglgqlWdv7+DFvZykrUqiwav+j52YJFzRPqaaOaciQE7 +Q+duB6l/SYoORxcRoYm4BY6ABppkBVMdeGECQwNoDNsAPAfuJtY2rb+GfJvTkqkGdQJqgQahhTVg +azY4JltytrBgw2F7ZCksHQ5LZ2x4coLRJMIisAW5GmGyeUlbV4wqc4yi5MmEwpJCODX59NX8RV4P +JA2aIOzSunmGz74iidmHdH1ZU9lZHAt9Wlc/qmEi/QEnNsanL+GOwzY4yEYwozVOhgNtPOpcXraj +g/bxEK+YsC50xFb89Pnxpcs8dGS8qS2LAFp6aLyzZggYOCEbxmQlt0wDTIJDXYJSU7Kj0xhgCjJI +4rpsK/rWlm+MsTqJW6MohGGjhjjQ8lWHw8qAKQVCDkfooMDUUFFM4f2FCFW+Ng2BTc+YQtOKgwPb +ghp2WEG7rJr+p+nvtN+7iYl4Ah6SqS2Kg7Z7+tm1f/z/tb/+4P/P3JsH25ad9WG/37fW3me407v3 +Tf2GHtTd6pYJ2m/BAAAgAElEQVR6EBqQEBZWBBazRCxjGQkS4rjAoUwS4vxhcNm4nFAVO4khdqpM +2VU4DnaAyCCBwmSQwFIjITSrNff0enzdr99053PO3nut78sfa+199zn3qdXq10KsenXrvHP3PWfv +Nfy+3zf7ixcjHgQ2i54I6i1SXuk+ovbd293h6ZP2/hZJQOmgDS4LCuyi+hd/sF1y9WfegdVlC9p+ +lFlbiK9V9AFYvy7FAnjjz3dcU9qgx92+EuQt/Hyed9593fXFUgIHK2JmiFElAMqmBuv8OxdhNVjD +XAr9gSl8mzKVjP1Idb27Jdc2cDaZ1n22qaU6azIES8Av04+MXlmKH/pCZNgI1hiPyeRkHH5Bmy2/ +DwWCgAGKxtggBzRkaUHmEM7kNHcumdApchB8my/rtQvIi5IzFTRcviJoFPA5kf9ADPc3OXol1dBy +ur78xnxhjw7N06e1ZSn3iR29uO9Wapaj0tRgOihQFksbq9o0uHBFhPqA7u3WpIsW6739emuCY/Vk +0tSQAHiHwcCNRITwEHEMAIUGOjMH19DUQ5Rm6ogRhcKJ6vbELmw2V/aay7u4fCXs7PmdSb0/jZOa +s8jYqDXGGC0Il8JNZ/1tG+WdNw1eenN5w9h50JmGaJZD8ru5kJaap/klsr2hq+8rbcJ3N5etoWJR +0hxolwtb/WC79o7Swq882yQSAJRcgCoCTo2FD5evbP+b3+Lvfqq8eEHxCLFpvRXq1pW9JbTeJkBv +sfvWt8MI2P2tAgIzPENEKsL/88HZ3adHP/y9ChOT9ouSGyyZ2dqSrMlyfAja8A0ah6VN9+Y1JU93 +2dd6z4eF2wt+cB6AhCE1DYlAnSNvk1dbAhgAD5dyPz2CwhwMbT+qhAeWF9KAVLOxDS9rrQ8OVgAO +4oFyw5yQpHgVqHPmy+iiYxkKuOrs4NKeXgm51xpADhwLdPRcqTluhGwxzmipUmQHQYflDXsh7ATM +bO+ZZxXTwoBrSeX04jAd6xtbML/zrX0de+/3sO9qfHbdr6y50dDKQotIoR8O3bG1YmPFNtYq9+hg +p652dyrbC5BQx+riDk/Xe7vVzCRAi9IrBnANWbLIhBUmZhopkRADGxow8BLAR3fCA5fCo0/UT1wI +56/UV7c520eMSvVK8VI03uDECSDwgQyooj11f/PJpllamp455b/5ZYPXvGx45/Fi7CVaDErQPJGl +RaZlifvnSJIO1pINTqGS0+20S5LoLcq1gexay/cVz7g/OAyAmClhBqdmThjC7nv/MP7ah4ZPXzY8 +bNjEIZ9A+vi8xpb3gOutNHpLi/l3ulXvI12Lg+bwLDCS8+PZu/+oeNXtcs+dVjU0Z6n5oLVqT3sW +JdeQuEbYx+HH/vMZfQ1xAXf6r/u/fQHA1NHvBT/s4Q95ro+1uctAYeHNg9FSS1BWMMIc1MAaJmhc +W9sPgMtxHmhDFtkmwDvJa5UgSVIErSA6WPpVPoZBTIUh0qmIJbON81YMFSM6py6YQcCZMw6PeLeq +nTGalrxI1OxYMrPUNv3aeyBt1BTSntORYGZCKUwMIRLeDgwp7mBbAj2Z3advfSxDTxvFvBTva6wC +CDaBrfD0arleSuE4KGJoojYWa9E6jPzg6LqMt5VqJgGmFK0x26umM52KRWoNs0J8KY1X7yRFNJjE +BCYmgMILzOHRLfvTByb3PzB57LLtzqxmIRypiC2B6gwGRWUQETFCFcZpwUIoRlcO4zBcsbhzLn75 +XP37n5i++lb35lcvvfKW0UBiEw/SgtgazXLQGLObujXgtUDWKqvtZYugtqDr9Hd7f0G/0n4+4Guk +pBwpMRhNROqHH6p/7UPFI8+QD6ltduE5fYGTT0v7q77ziL0rF0j7wlZAb5egF9sNXCCWw32PTN/z +gdWX3BiGAwZzhkAzEeoB52M+tHOBu38RoO0r3UynNV9zhV7ADfcJ/MKHWDueSz/Np9YSF6YbYCwN +UQZGhRKuAlLaUlsJUiRnrRcG9YDAdV0L0CZRJTGu0DYL/CBmtW3TAQCoGWurJw1M6+gGykEhpUBE +fAlfzIwWsmqnBFeOcryemyGlKVV0J0mysslUbT+p53PznGJNUt0lSa5BRfo7QdOzhaWfcX4DS29X +a2/+rFU5MU/W+hi38GYABE/HyVLzIItbbTT0Ir4Jle7t1rs73K1R2eRy3RhEzBRaFE1Z7s+aqo4T +OBS+NDR104TCYozqROg1h5ulGp8seWWGT32p+uP7J196tN6PrhgMrBBTMfFQU2+izowm+UDFqBDC +RIIBVFIsUgHnsORVy0vPxt+/OP3Eg1vf+Zr6La9fvmnV1SFz4ySnNAvptDqWIizSby0nYrJzI0gv +S7Jbo+c4ts/ndBzwtbTRCNBMvYtNM33Xn9iHHybOmV3qx0/P8XOu8+yKiaLxMgu2N0V9xVpDaZ+1 +LVB69NhZ99/0J+EgmnEm2Cw2L1fv/nj9Ha8uv+21MdRqPlUWJIk2DNOQfdHMjtPr1che9NHJnw5i +Douj67nVw8/bIenhvn/X+KKk1pNmLgKuLIvxrY0gikobbcu2KA/bM2oFmAqaBlAQBWTWWB3a6Nyk +DkYA4KANXkugpjmj3sJV2JJREWZOZs2MSoyXV2xUCs2siVW0CAZEIQge28BwHRYpAqMpU0dR5q66 +ANCVvzpsyiRpOTYr27bVmJIyIpC8tXF+n2tvnrq09tACWcfj0OqbrnderAeL3c/eiwlxzrbRfCHq +ZmUvWR8Wp2HKvdkwSL29t7+zY6gjQkRJv25HRrGxWY29WLGJHA2ktqqxZkRvWqjQUSMEhLPSy5ee +0fd+ZPvznw07+5gtlVIOp4RQ6BAFJnAqAjHRzBPMzBNGDXCkAiYMAhiFEg0FIUMnOnh2d/qu+8JD +T27/tb8yfv0tA0QN5gZI3534dqtMIBnCu0RRZJoNzDVHaHfy9R9b3+17RdsLF/Dk7MvnJu/5SDnb +JLfSLuwni6RVl+J08dpb3dljKAQBcWtPz192j5hNr2LeDLGglvaFYfdOx+r7hE5wGThePXh+7zc/ +tHHPS7m2qo3lcOikwacSe1mngEhSRRQ4ENR/QdDtmja1xdLs1/f5h9sLHSaJ154KS+YwMxCqdJ4b +LwvFOLiJIxBTbcAcbZsVCYIzkBCBltmClorfWusP7XiLEYhgAAcHG5wRWgMVZK8y96hyaHJMimVv +rKrd6SViuDKQiT37pO401kCA6MzGKM/cqoMxmlk24yAb/gGQyT2XhLQszAkOTlqGLOZQITFVeoTx +SEEaYs+/2W3Ojo71R9+5j57GujDLHbr1L0Z2OOw6nEN9S/NYUz89md2x74+tOiuaSqbnrja7V4Aq +at1wiLvWZ+pDlKqJQaGxKcrCRxdULapBGjGTBhgsg1Uhv/PZyR+8f+ehx6jiy0EJLVwQR43OxGXP +XySijy4yIT3JVL+ggEUimvqsxQEwCBSuKgLUFVo0lI8/Hi68Z/fym+x7Xz10ZvuqY3ViVKcplARA +XhkAOS5bkWk9BKqG1G6m7955vpv+K4wcl2ttTHKEOu/MrP6dj/EzjxbuQowT9LAGHRdbO+Fedqvc +dXPxurur0XBQsHjwqf0//ZzO9uWR3WgNe2Kqv5Y8BHPIW4HdBTG7gRHRCGeD2U793k/sv/V14ze9 +waFRO9ghBJNZLTlPVKXNjLOu+NKLNVnXP/pYk955EfPkrc12WFBp0+fjkL1v7o8T+lhyyBiKQo7f +wtGKcGJG1qYhJzertgqpz632rABnsBLwUCKlVRqgAiqYPIsOdHlD0CAGKLRBnEA24WYwH4F9k/0G +gFGioQEMVQB2IHsQhRU0UV1f9Te8HpKCGDxBFVANZipGkiJMqTO8BkW1HNbdRRqYpeQEBU38xlqD +QgnLhbKyOO9Cl7rADszTLswrof159b2MUczL9d4p2DWcc7ipqOvm87szjIVlBYs2EewppgEI5dBu +PLK71Wy7/YlyAriCdd0MR4y5440zsxj8uMRWjf/vvt3f/r2d7avC5dIVpaZANBhVfIQmWxioTIXF +i1oohiLVcGSq7KYAIlSSapuKpZnSpHZxGAuvPjp/YTv8+9/fmTXxba8bi7jQwLmc+qgKaXO7slMn +yRywrb6c1dVur74o5/SArxmUlilkc+nq3oc+4XEl6FXrrVYXWBvd2N1yRu444153t/+217qzp9Hs +V5P3y/KSrSxrOUDVLNwd213SJ3GtECPgiaPAiBBDUFw1TBQRMNpVQSmPP6vvu1++9TVNUTBYV1FY +WlNkyppJFhMRqBKYw4u/COa2BW2xv5wLHo8X/OGY3x99srYQCLL4RUzqu6lCTfyp2+3E6fqpZwsB +A7APHQIBiLAZ6MEloIAm/ZRgqrkWAYEKaG12QQORVv1MLoiUPNDk1NFoiBPAtaLMoCGZEgAFG9QV +2MA8CKiHu+mO4dlv0RhSNr0lc5mjaZRsXEsu0Wt70NpH7tebsJyIRS7ffGP0K40+U4CKbNNDz2YS +e6ikc8A0Z3Lpi/NeBYC5/d//KwWAfcO5iHWHNcEMViosYGqoFU2NMhTrdny9mmLX6q2oHAwGLJQe +LAhREWWjVgy836/xrj/ceu/v7dnWcLBcRLqZk1gaSaGknrCuEXOqPoUZkGYOKAxqliz8UcxS4+H+ +RhIGRakQb9OhDmpHNRG33Yx/5f37ZPzB166ZjzNFCbqsWOUYwv5WRdZMW+o/r1hc/zjga0aKJTC2 +5tEn7HNPEJfV9vtxal3Krp48wpNHBi+/qXj9PeqFQa3WuF87J0GjVvtoc4a79eseqPvXuReAZeC0 +w9iGpVjBOkY7pthUPK2YGS4ZBy6Mm9/9ZP1Db/KveHlESNk+iR63wbmaop5bfQSYR5C/INCGnq2t +z727m7yeO+we0HrhbIcfvPuihT9k27ZNY/AnztpL3xS/+Fn66AhsgsvgFIxAAVNYAW2AMvsHUtm1 +VPoUAnW5WXISyomBm4MEmAA1jIDAKSwiutaqzNbuJgDbSh4NVGEOUlhY4fDet/HYaQuN0GXNOHnX +Dmxr6Tmu7Wi7pgmSSQ8yG9x1trjtTP3Ag2QOwWMvfq0PQ33jSTdimyPVxzvtHYROien/VSfggYq4 +oNgHSsOaIQB1QFlDpnCT1RW3urwbmr1K9ppgFVakKCqN0UinaCwO6WUW+Zt/tPPbv73rrg5t4CEe +ENAKuCJKkBjTdyb/j5IKMRFBoWYihCmZsntpKRMpb1qSRGo0YMPG1Q7BNxI4E++ElS69577JcLj7 +fXcveeaeUnIgvlvpkpkfe+j24o/sDwVy8mrqfTa7/0E+fVkwi/PciunxzFhKeWzVr45tZw+zEC9d +4YUt//AzzdUr+vhjbNut8VAGSR8lJe+M0nDEDZf96rquOVPHXUrT2OZIUQKXFA1sJqyqLz2584cf +P3b3nSqkmiI3bsvMNjHc7K4DaV3Frf7m/oaDWhqH0Ta9v6Awfq23ek2mds0XC9/VWp2yU0Ct8oOl +8V3fvvuBX3Lnd0MBLsHt5fMsTSZu4oEKBmAICuBhCZs8EGElwFypLdnbmfhPwqkGMoCF7JbsTAuZ +2ri8OUKEtDDXDKhnXzW+8y2au17QYEIxqCoOmBqy26ibje4Z+xWh+z/TdabRnVwv7n5F9cCflTLN +/edb0Om56ecsZTb/fiete2J7LrIX86/7WNmWd9oVIGJfEYhoGEUcncHx5aeq4cr2NO5XjK5gdLOq +HkRJe5/mABTi3veRye+8Z7t+piyXXPDw5gzwCqipM0ZSaAVS3LELko6+GpkPFAOtdjaKkLYOGg8G +yDgTFsKI6Cne2DDAChSy2Sz9+gf3jq/51908sMhopqBPCq12QdG9qGigsypfv325PzwOvsUiTCiw +pvrSo4iXG+yiXaHOsQ2YAC5Ep8adqX364aqpw86WXNyzLz8x+/Qj2Nry11o5O7SQyNtiGDGQZYdj +w+gdzPuVwpdwl4c4ZzVI7BCIqKzej3/y2fq/vORPnFQLZoSZJKeLQNMu1zaUgB1xOzAwHZ7BbyzS +LTAm9O52gU99rZ+5AOULr/sKaf+7zJgsEaJF1Lh01xsm937X7PF3l5dhdW5tmU+sAQ20yV8qFWyc +C6tZCQOQrGxlNs9IzBFtqmDM7ZNTOTZkj0+rqaRkEg8QqbI3HOgRhghrNrznHe7Uy5oYIQIjVbQL +Sickh3gcJF13j/aVKvfl/0JNYdH88srKf/b6vff8Cm2aygB3boHO8C+9eUBvM6MHcwvZOAuWuH76 +AXrvG3KUiQKKmeZOrbMZZorlwW03VSz3ZlVthUaqh1OCzoTixCjDwn3mkeo977o4fdCVg0LMeed1 +CYU6KCeudsKCNEZGoQgEKTYGRjWtBTSURkcbpFoo4sQyycqTaTBaJRRGczYllwTD6FKWRzMorkwH +/+nzsztODY44hhQ0b2zJGpDh5gADOl61EI5zncNHmpnBkFqPkgib2+FzjxL7iqZLX+/kjxoCoBcu +2QOPi7hIV+1OdHvLPzmN5x9htSuHFq8zLnTr119Il+pNbrl4kjIoYm3q6cqhPzsw+HAuBqigUqs9 +YnPuvH75MZw8qWo5DxAHxaKYUhuT4U3JthZVfx93noR8G99o/fQ5buB67uea0u+rMrgO+Bx8aBq/ +tLH6pv/m6mfuswuXQgE0KAC0ilXsa1U1RBGXQAIOApjLxbu1gFhOSEDKLe0SAeo27zkBIgAHiTCB +NpnrpR4uUiCuId7yV1Ze+QNWCGMEvcHMayoZS9H0CYm9ZHe5tWnZOAC4NLqnzn6bFNYWFSU23vzN +z955z/SBD3ixoAeFaqxtWmw9y1pH0FzvjFjPYmM9b4Md+vMDNahlD/0AEc0xbjqFs5tvnhw99uxe +tR8QYqidp0axoVCLohC6oefmDt/zK5ee/ZCNy4GqpabRIOoyqhcfnYiAasnBkqzPRrTlyLwamAIQ +SYMAM+oA4nLwHA1aO0BcmdIKKEJUPlnl1aKUhmpQfvbR2SefCt9xa8lgLi8sRQyAGsTmKrBdv+3l +mkNUVU3bGGEjGa/uNA9cBKadnFkwgjZACGH2mc/ufvDPZh+73z71pfiRzzXn7ke102nLrY45p8Ye +PMwczClhiCbOaKZRY4ghWqPenVwuzxzzWDeUChMoruzP7n9MVLP0zwW/LGdZW9uxL7fNyjFufebb +t0B1U9lHlv7Ai02PD49r3kB36l7wtx/eIod124VvYWfjzfMosanHr3hd8S3vrI9gtsyuYCxa2tLq +TTBAA2wHIFjDJpmaWQQaaGxrfsS2M3xibTOwhtWwCmjAAJtBA6yBVUDdwoRDHCOu3bLyyr85PHZL +iAEUQzSmLpoANXsJkjINpDO3oId2c9sna/mCBHzCWdOMXn7Lif/qh2qsMlc6Qupwr/PAlN6JbcxT +/7cdSOmhX6H9wMO/6v4wtP9qoAFmWJrh1OSlL7ko5cXt2XTfmtosKinKxheFcxSB5+C+D+48+L49 +b64BzTGMopaRRiVUVFLZ604dpMGgZmpGJQzO6IwBqMVq4VTMI1cvUEnljNQEJhBn5hkdSKggejTe +NV5mZBC3rfzw5/cvVipENMTE8ZJ1KCuec8rT1wXX8oZOxTNhMNO9/XBx03BZD6FSTxuFmjXnn2ke +eghPPVrWu3LQwztnsC+MhfWzgyMxNezCprhcxeksIqRNGFVritywXJ5ecxgZEDErn6mazz0Wdyci +Lqq1n2LJJmSad2quumXUeDB3fZzqg9eCcb0/cC2A+DqN/tLOYc11fGD6mYKDMA9t3Tv9Y5/lQPL9 +JwnrVtff+uPhla+FMwUrHgCZ9chFuw7QbWgEBFKDNRjAJpcAQZ1rqKHJMKcNOAVnkAqsgBrSQAJc +DW0gCtZQwA0RR563fd/wZd8dKCpEqhULigkla6EUikgmTjmsnV3udF9+YP44pelSUxp8BYU7/o7v +9t/8XZPUPahFmQ6JYm4mc/Avttd0x+Twwemn6GAe17pYOVyLQ2xhGG+5c3bm1kuTOJugqm3SNFU1 +M7NiqVhaHpS+GJbF0083f/K+nepT5XBvIFOhmRcvEHNRQBVLNsI0XUxxfrDEaQyWG3oajRCjmOXp +BVTMxCBonADZNSekOdbezIOeFHGOjUcFaDF86LL79BNNdJJjSaippTAPuQn6svxF5BDC9quS0YSk +NUE567q94pAhoE+e+28efo3eIvX10P5hiIBhR7EXnt6181PuNlpPbVoJMVge+aUltzIEBgAVjWF/ +9uj5sLmb+FoCYksxH/Mkq+uq3OnsC5Khr3/Z8xjdxV+/sYA117nS/b2ygNHdTup/I5Dq/CR5SogJ +HeqmuOnutf/ip6Z3rjYO0SjtMY7z5vBMUhS6Db0C3YNNYbuwGdDAZrD29FuABlgNC4gRFqAR1kBr +aEBUWA0AQWGCZsgwYjz5htVXv1NW19Wi5IXzpE8lvvuTliwqzIA+N43XFFpz54o0hzibLb3kJcd+ +8u3T4mxoA3STEtokZaXdt+m/2tvJodcm+bCio/MAp/OnSds/l96n7WJY+zt2X3LH5eWV7QYBJNQk +mnNFycGgGA790BcDKT715b2n75uW8HHTeaVznkKkPphe6Eimwuk5ixfZ6kXJGmneg145ijI0GbX9 +WNL9NwKTnC9gRHCmAhFGj+AQvY4Yh0LQV8Zt4/2Ph93GPAzGnPAWO8PanLT+enCIZKIyGsXYgash +9iVPXxvFfAwOewvTvXNwx/MvOjQ8tOQz4JmArbi1xyf34sX9Zmc/TisLDT0wJAcEKmJi2I0PXdbL +u3Stgmk0Rc6uRQt0Zkk8tF2V7fAhX2Bn3QULJO7rNO/PMfrIez24tvBQnCekmNfLzExEmIvYpiMe +AW28BNWN17997W//9PQ2H4STlFvT4lrsndVuZRXQfTTbiDvQK8BV2ARISFfBamAGq2E1pIYFaA2t +YTPoFHGGAEgDI5qSrrR65ejwm945uOVVUaPAMwpJUNumU71FBEjLDZp66nZ/4ayXxDY3IckY50BY +rJuTP/Ady9/ztimONJxTOUPvweOBYD5ArnDo1PQPjh7K0EJPM43t6xqogYrYdiend9979cazl00q +uP2glUQ4KYaD8epobakshaOSV/bjx9+71TzGEoWrEVZj9BZH0ZyZIJbmnJhDFA3UzMoMlhIyjCCc +dc7kdGpc0uOMTAHQQZLRGiowByFFKA7i6IQisj0wDykUtTE2/tx28/Dlmg7REFK/POkKSX59+QHQ +1TVHa8szSDkwlJ0UCvPL1ocw673D3J9lziC6sK59EEyXuYPElInhCcWTqvu4MsWFvfjs1vTq5Vht +u1q9UbAreNawY+evxM1dWG510KqeMEWqV5O3bO5bnyNVOoDo2FcfxWC5BMGcTG/7feTggA4xs4ng +WkQP7Q+0FO9rX8L+510nki6wkoXTjsMYmlMsra2QATO4AFO/8da/M/yxvzVZNzUsRP90Z75j5X27 +GxS2B2xCN6GbsG1gCk5gU6AGZsAMVoGpnJjBNRCFAbEEh2iWB+6uvz76prfGYqAqgEo6kqIZx+aX +rHtEazvB98naYXyfmxYzR3rxsWnKjWO3/+O/2dz8OsNSAKoeonXGr9jytdibge5QdEPbueq0H8xr +sh1TS6wtmdUqYM9OV6deu/+qe/aGR6qGqqZRQ1QRGw9ttOqPHx2ujP2gLL704OSJP5p6cwqIQhuH +NSG9wqxQpUXE2oXotXExnXdLao5mwYB2x4oIQbMoliNglIxiAphAndEBsOgMNHEUBzgUkJnzlY+k +zcjK3JU9fubxsBdFEoLmmCweHJGvpwKU9FC2zhGQhuUlLQdNu05ze7QHTOj12mHr/UHvyv5aWu+/ +C+hmB3JsYnjG8FjQbZvs6rPb9uB2uLSnl6tQ7xj2gAq4TL9ps8oAs+zbSeSswx1kYEFSpzrW2N/f +nJfVxpRgah2KMPkeDmFWMt0cBKgvHCxrD1feK2DbzPH5L+HcOX3xBq/lN1gE0D5QWOEoniAZNcjy +2qkf/5+H/+2PTkoLQM2U5nRA1jqqgt4Sd4fcUpbCDrAD3YUGsIJNEZIzIeQuyzToAIGIBeIIzYrF +29+08sa/LUdPaFRPKtkw0khLRdIOUbN8GK+B6c/9X6ZQkbSZiqKpqtVXveL03/3BTTvBFsJiz6iv +8z/7q9vppzikoGB+WjjvQ+jU2wrYw/Ht1W/aveveS7K8GeNUOHPW+OC8rKyOzt6yfuqG0dK4OLLk +Ifz8H+9UV1DCA9ZAB9FJBdC0gMGck8FyWY4GvvTiBHl+JJXSTYI7JiN72gyWvARGEkQjMFKElhRb +IngmFa8WNiLqBAWGZCluZ4iCRti0GTx0Wc/vNd7RTOvks+htsW4VWqbxYsKcR8tnAGT3+HhQv2Qs +92dK3IehTgPtxHJ6sdDCusOszs9g8wu/INU7OWYAsEnsRhxB2NBQ6COlWWO4KAgEBfuqQQJAWrDo +LIWSRmNbQh254SmyeDgYWU0FkbNJu3lMhfBalzcAMyFTgV4BmbKACLK/WfMnxGgdhOVExWzXzkb4 +w9FS39CIuT5nwQLetY0CMmsDQZgzmtNQF0dOnPm7/+SpabP/z351pLk5k7b5jylGoWlb0rG3NzrJ +Fw2sQAAz2BKYuv4GOCCutinRqS3jETQbiC97zdHv/Pvl2XuDaiqjQzOXOpOljLmeypkfBPn++zy0 +P/ldgofNVzrJkwNGyzHCIeidP/bO/U89fvnf/dIyLib4lV6hGml3ftd9LfQC0RMtSNW9usXuzC/S +Q7fudGiLiVOc3hu+fOvVd109fnJL3dRLICH0A18O9OjJ0anTa2urbnno1pb8Q+ebR+7bc40X8aqE +AENVMjJCBICUlBPeLVtpxPm6nuSqKAYjlQqvAKGutXuQXVJb9O1uSEUNiMYZBc4JHDytFgaxqaCI +mASWCuelisaAizt48Eq4Y61wqQciU/WqA+tKn2oslCe4zuHzpDM10zPC/MaR4raT8f48726eSHcg +1Q+t7qn5nJsAACAASURBVNYS8wUPZB650Puca75GtpsG4rLiKrFisZzhUntB6pYRTMQUMFNEGiUg +wtBZvcVgIm7RwyKU5PpRMqWP5nOQzAZUARHVSHPiQDhEqDPTptLtqV7aaq5sWhWL9VV39IhurMrK +AHTmHFQZTZ2ZMbsIUzeZniWyL50Wbuzw+Prxc1wL2vrvC6mdTooD9xXpY4xcO3XmH/zCo2Y7/+zX +lg2BhFkDFL2DinZ7oLVO9FUzKtwUILAPFhCFCGwdbGBDqIcJsM54xNxtd619z8+NXvbGoBFkqjSZ +S3S0VYm6A0IKU3iUHJDxhedFj6Tb4W5hiYlnhm/qRGOUpeVX/vz/8JHZ7tZ/+OU12Yl6IIxlzopy +sPltXnFJuC+9v0KP4XY/XaZ4jBhOsbE7fOnuK++ZHL953w+DDOA8xYqBHx8ZHj+7etNt66srWBq5 +8VAGrnzqwZ3NpxqPJSThSsYC5ijRVNVIY/RauNK0YbQ8XTCKmsUkywWaCpSlVbPkMM1R79AoFBKC +4OC8QBhbExtpIGJSSD1cLTGYiM6i7jd48lLYPhuWvXMpkjr5PWgEu+Dw/jJ1y3Gdo62/pqZCgZlG +PxgNbjm9R5QG35M8fY7WUTm0bwoW8asbNs/y+rR8wYRoc79VYDu02MqOFTqH1XEMUVU1gqClnKpW +qXLizCuYGnikyitUVYWCEAg0mdOoMBOIUlQNBnH0XgCd1fWVLX3ygj5+0Z7YtK3duLMzPXdRtmcS +aw5GOLYSjiyPz54pXntb8cqX+NPrWjhYdEFNBEIimuXUFsMckD1PvvZVse96xgKLWbirFBnRZ5dm +2eZrQd3qyVv/4f/5yPjY1Z//10t79TI9EIId1GKMPSA7XIMvs/jkjitgQzhD3INtIA6BAlhjfczk +rntW3voLg7veHENyYQmQCu3lEKz0gcIuDhegSiqikNa95/ztGMHCO2iVoBxRT6ZgJaoVyuBcrGp3 +7Pg3//xPf6yqrrz3V1fcXrTcmjO2D9g9V/dvYW/3JwQ9vad/aiJgHAbbmGFtd/XGrVfcuXnm5qvD +8R5YQWUgRcGVI8XZO47dePP6xvqwEBkM3Wggajj30d3mPJfgTGmgrYHMAbhqCoo32sxkF7E2iyjV +mRFqiGYKGGNS5xWIhJhSnXMEZzSmvptiEERH5wWelRhETDQZsRppWU4BE6lncRBsIJwoLm65zYrj +0qg5Zg5IOS2L6suLS9nm+ocmEk9DeedLJ7Y8xB7mcz7skObY3UUHczofXd2t7uEzar0Sfd3mQGtl +6P7Qt4iWRWVc5uooVLWqqpKIKUIleQoAmDcnIo5mKpS56cvc20CBmgejqpmicEJhjHp5a+9TX24+ +/GB1/xN67pLb3I8Xd7xFWZJRFA0RA8qOqhi9zGZudsOq3PtS/733jL7v3sFLTsfSaWigyaueSuxD +2hJ7Cynuz7EqfaL+ddJY+7pb90X9u1rEXyKJgqhBVo/d+bM//9TLXvrM//JPp597+ghEHKGpDVLW +vGKrpi2kRnYfBgD7kH3oGLqGMIYNyTWEo2avfsORt/yv5e1vCBrMxJzmnpiYk+fMztCk7Le3yq/+ +LN0S9Fhb8vsZzQhGolBzCSln9fDsmdf+4j/+040jz/7bX1rF1cLBIgUWenu17Blh0D5737jW/evO +jku3BjOW0ZYaO9mUq5NTJzZvvunpjePbQE1thrSBDNfL8erglltPnrp5/cjKYFS48aBg4UZO9uv4 +zBM1QHFEFEBQkqTSIGQElBZQbza2AwAuKBpSFWbRVC3bThxhAh9gjtElpIekKAlPOolidDTP4AHS +vKlRaCFZogkvJCCFFZEMhFmMuDSxq3t2ZlnIg1CSbCQCrFda5hpb7jqGb5efLTs1I1e+5ZW2erPu +fMFaFo0eTvW3ps0vHjqBPP+CLQnvs/QOxTBP1DtbQ/9iacUab7qhXF+d1UFjjGiD2GJQjck25IuC +KM2L2UFNWklRpqCZalsEOprSOSfCaVU/+NT041+oP/zl6k8ekfPbxcwKqCBE7BK7fgsNGoOTqQdI +1WFwkFIv7McLl6v7Pj/91Q+Vb//m9R9+oz97LGqIkZIaZyZrz4Hl5/nGH/Y5xZ/DWIA59JDOcu0U +AKnzrg9RQTn7jv9ueMe9T/2Ln7/4+78zvoRleIfsylkoQ6a9/BP2do4KbAAWsCFkxTWrcXYag9e/ +/ehf/Ufu5D0hNiAhCksN8xZBLd+xWRJeh/XNazzLoWLoB1cSqSFbUr0i4dSUUC9WN6PTp974iz/7 +6TO3fOFf/W/Dy08e9TFGqpkDSgDADHC531YG9+5hO0sO5lWcCAiMWGrshinWpydWw9kzl2849cxg +cLX09WBghZfSL2+MNm4Ynbnp5MlT6+vrw1HpCu+8CABPX83izl4QCM0jqSDJnaWiFl1gDKwnjY+O +jjEok8kGtFR9VaEw5npfos6o8EaVzKxSnnrj6WD0DA7iEIUGNGKSg9tMKI4k1SXvG2EKcW67qa/s +edKbqKj09YDkzk7z/6KniLb119RUaGpiZqord9w+/q7X7P/GF1ZJM2vX4ACqutFZVbrNar0NjfbN +BanV/5yOk3fq7cLy9617NeBff6ONxloHUzPVGKM2kSHUMaiqmQ6Xxr70SIWkUlhWJmtIPVJTn3iS +KLyv6ulHPz/54P3hzx4Kn3jcXdkfRnNQ72Jju7TgrDbsRGwChcfYAKACdhUGhXKZcnZYLVefuNx8 +8emrH3t4+KNvGH/Xa+PQxyqIeBKa/AoZpOxrMiJ8o9wL6AvPVGYQ1vIZFsoIa0J97NVvWvuXr3rm +A7+2+cvvvvjR95fnsaJgSavhcsfrA90zPUk/3VJGiMdga5BSZuOod4xWvufvrX3bjxXrp6umFmeq +TmkuFdjrWrWhdTinmEWZE/WH5cFh4oZDCA7ALAVzJbuBpI70ya1GYazrslh6/c/9xMa3vfyTP/fP +n/7w+1exPyKioW4Vly4KxPdkfHcupJeekSYhYElxpClOVBvrs+Mbezcfuzo6eqlY3qGXleWgLEb+ +6Kn12+44e+Ls2nh1uLI8GJT0hRQQFSTDydZW3L4UHDxAgxDIJbgbMsAMouIrQAlvZspUbMDUxMTo +ozeoikSxHJAhZg6MAp+iQuFBRNBTPemTI9TUJcsDIYb0vTA6eGVoU1dURCO3phZT6q5pUkENCRAJ +6DU9PNe/7Ts9lEltMzUX1Y2GG2/5/sd+470j2UY8oGyuB1KYtxFou1qHbWd92LLWXraAhui90z2T +tbKuu6ABRi+7ZQJrZlUwbaraQrQ6xKquLYYYfVkMR6PWk83u6SR78BNnpnee0PqBc5d/60PN+z6D +Lzwrl7Z9nAoqSqRK1MZsoqgFDbBFbBVw+QwhWq4aC7Ndxs2I1cLd6Ca+evdHdz72mP7MxfHbvk2O +H4tR28o/bXkWaeds3hh5TX7x3C+e37D56fzatktLZFL3xZTip5nWEIRvQu2X1256y0/c8Ma3b97/ +hxd/948u/tkflOef8rsYBJSpcuRezpZHb0uAkHXoEmyIeohwk5ZveNv6d/zo0p1vUedD0wiFkaQI +Y0pWlVxOLT1GChnVxChUIXIg/K/9FNfCsu5NsxSLb5Eosi0o9+CGWIQ5lg2DC7zju9906pV3f/6X +/8MXf/HfbT1+/zqqzmeSaFoDEBi0vlHXnotibiePgGO6dDSsn4injlc3ndgbrV4Uv1sMKykDRcfl +8bWNE2c2zt5y6vTpE+MlkYEUhTmPUhwMhADqnO3uab1H6cxVIBxVzWI0VZqniouMwaxQT2h0otGS +lqpQRgJiFg1mFKamygolFIxOSSG840yUxmj0yEHwCaNEaJZssiCgzpxnpEaiokHdDKJmHjQDxEjJ +bbNbQcW2yPOLaGLzLtnUBZIqBINqFMOx73zjk6951e4nP7AioqqdwWtB6+xDmF0rfAmHDpO1LGyB +onc+7z7YxXlJyI3bx3ffhb1ZnEwrCyE0Om3qqqrrWlXpxA+8OLTG7syQaQZzBhii9wK65pEnq9/+ +6OR9n9SHnxo0E7e718RNZTWyQdRZRO2MHo1hBmwKJgRim8bXwXdb7GRmmIV4xXihwA14cmv/H10M +j55f+om/Wtx6JtaNKSFZU3IgU8MvQUcjFoQVrmVoWDicC9aiayJdiu02AGgzYr72/ZH+ujVOgpRk +izWSRhFnIQJarh49+pffeexb31Zdenrzs5/Y/cInwqMPbz3wPndpv9yyegKJYA0fYCPQgR4yRjgC +u0X8q79/9dt/aOPV32flemzUYoATtKI9Rc+0sYJAqrybDWqWYy7b2fpKiP8cc9u9Tp5Qf1BDh21M +ddK11EEMGpuwcvL4t/69n7zznT/w5V//7XP/7+9c+fQXl8J2iV2HWLdhLgYUbQRMW+pjSTCKGASU +PLFevuTm8vabcOI4Ruszc1ei7YZow8GAxdJ4efXkxskbT5w4fXRppRwW4kspvDhHkt4YYD7HoVPU +FBmU1SJZYEyLZhGuZjCKCisIDY2YmWOywYDI3ucoEDUnIsKYzAhG5Baf5sgg6iLLhhWNRPRM8a5F +hBNEMw9k0wOoqbNXiomJMEeoRoXkwrt9UtbZmfAcO/+FDU8wG9cJy1XnNAYbnz5+ww//0FOf/siS +q6Lmtek4dndH7Nn++2yrQ73+DS5gIrr+L+3FHa5J75psiCUnZu4Nr5Yzp/Z2d6umDqqhqqrJtK7q +ECMEg/GoLIqi8EKjpElMpQqQZIQrCk729971n3b+7fvkI08OQi0IwMSwFbA5suGSG05iY5gkak1E +Q9UBuvWU4k6nKLKIjrDzEU873oErk9m/+o96eWf9Z94R77iFVYwaQbgoUQGnJKEgpePh3RnrrzF6 +cLbA1w6/PjxSwko2HQFcXI3nOzL3zYZeJgZq1iotkqLbAkXED8enbh2duhXf/Te0nu4+/vDe4w/p +M49Mzn1p/6lP4eozZTAELQqRjWXe9MrhPa9au+cvj259jZUrGqHaJH09d60wo0hqhIdMuUloLj2U +UiPaIv1f7RHmrIcLs5p/otf2Er2+E+1cEqCImoUQnHMbN974l/7Hv/NN//WPPPHhj1/6+Cef/sDH +Z194GpMtzprS4hBO4AwILApfgo5Lw+HLjpe337B05sTozBmeOiVrK5PgtvZn3KtPuuJYWfjxoByM +B6Px+MjKynhQDsUV4grnnKPknEdtgyPNzBSuoHOpqhAJoswu3eSTp0Kipug0M6OaedUAl9hWivNz +NDGqKkHSR8AjMjtXyeiQgkCkJFGgETNBjDCjRZMI88x+mxQjH1NgnI3NNb6JSoBKSfXhwS6wtDtY +eNFNbL47IjGFvgDiENScuZM/8p8/895379/3/rEQmmu9W++Qd2MBxeRa1/SH9pRQHLKq9nHE2guM +nBXlib/02kaK2WQaY6irJlZNmE21aWITbFgsOSmKgoWY5Hz+ZBXylKjBlcP6gXN7v/Bb+7/+4eHm +FYcG2I2YGWYO2x4Amlm0BnuEOnhDY9hGmyrL3s+urHM3Ia1MNrMHBKeHe7P633/gStSj/+BH7LZb +YlOLwmhqJhFIeOYsmWXJ1OgNaGNVOtjCtUxsfdQ7jIC9RemKNjKnfb4gXEsw1gM0tvCGpAsaAREq +LGpDI8QTLEdrL733yEvvBWDQarobrlyVamaI8AO3siJHVr2MCcRgCEpER9NULdIs6Z3M2YQ5MBo5 +ekOZQnPtGuz1axod3lnrK28RLP924WMPjNGmAEW5dGTt5W9588vf8uYw3b987rGLX3zw4pfPyc50 +WTkwM41+PBoeW9fhYHDy6OpNp/zGui4P4QoNmEzrQd0cN9sI5uHUCwfFYDCgc97TkU6SEihCATSn +0jCpVZZsteUyl9bdjqeZCBxGqeekmcIiWKlahEcu1WNAsNSdOK0fRFwEXQomNwqViDAq4yA6KM2D +KIIZEDyKmhSrXGvcBCxQzCyioVHghFCT1FudqYq4SuK+KT7ggN4gnaeeJ+HF9Ye2tiiBRcRooHMx +xJWTp8785E8+8YnPldOLU7I0G7YqYT+KurvHhZiPPq3rhy/2dVjtxfeiZ2O2ngM0AiKyp1rc/Sre +ftf+/qSZNnUTqllV7e1rrKKamhbelWU5GJZ0ni5XME7StoEOyuHmRz+++VP/V/nRL44RiKnhWcE2 +EQIUaErQsFdhF4gGi6ChwjycsaVp6eZjj2kW7QsHEM8ETItY17/xgcsjrv7UO4rbbw51o2IwqAqY +zi0I5DDSVGuxVfk6ItaFXAFoQ8HnTvJzbIXMp1rW9oL10AOqk14B2TSSox6pNCWEFLDouvHFGAmA +zqC0crg6PLsW2jkEYFEtRCNEEEGoOIVKi8JmQknxt+Jo0C61oNMpO2i7/pPQV0W/irc66b4GJr+R +wVQBSjm+4e67b7j77u46DU1aBBYEXARjDDEog6oqB7oyGi23sUkpU0lEFLCW2FCAlFTROrqAg7NB +pZotjbl2m1x5QstLtCmwBAhNVQNIIBqbiBpwRoFEiRCjmVNHMiVx+JwkA6aeeqABpfgqxbdFoVMF +LHi4EBAauFLEQUCIxRRppSokvBAWo8HMAYQJdOScZ0o3sB4S5JnuKx+YF9XXM3y3pGLQpGiQVKNa +DPGmt37nhb/xg7v/9y8eYWqgcaBmugMDUx6dcQ1fmdb1YWIh6lp6v7WenxSAGcLK0tK3f0e1vDGd +zKppVc2a2f60nu4rohLRQbUohmUxGIiTNHID72g6KCcPP3zpb/3L0Re/PHCVjxcU+w576e7aPvYG +GDHpezP6t9R/uu4BO+9tbO1uBAxm2ASmbmrNr354d3l09L9/p55YZ60CiTSYmilBD0cRYzq01jrm +DuZsXuXMk93FNCw4khaWtrVlAKlF5gHxehHkYSvuk9lOxDSlV4h19T5zC5dcG09zpDLAmDZ56kcA +GtTTQDFSoCnzx0zNVCTLR4JJ62yniJ1L40Ufzz0/raEx/aerEwC1oA2McBn2hHRKUk1DtDa40tGJ +d0KBqqbDoTSgFjg1p6o0wkUC1EgjnWmirMi7zwCYRhMTM6ws+eM3lo9t1CqKXUopBiBCGoCUCVBQ +HSxawkmXHCIq4mDR1CUnQXKJURRwTNeYgwMDopo650zNoqUd7GpEBxMqzUpxNEc2BZPe54JmGDYZ +OD0yFhGxaJbCd7s4NlCk29sv8kL6ds5MDCYszcWkanhojG60dOfP/ORnvvjlvY/98QBAC2cy7yKQ +ngegY2odOqBNG+y0tgUXAdore3lHGTUIOOGOqt3xKveG11Zmzf60qUOo6no6a6q60UYdZDwcL43H +yyM38OZyJUUaqQbvymr/wk/98vCLnx37HYTziplvwaiz7nXGwXRL/TDjDtqkV2RG2hilrr1c3+bo +AMXMcLHYK/RXPrTzkmPDH3hzWF0LoWFyORkpNGfmTQom1pMN4b3YFCDVOyRylC9BSzaWrmQIvjLF +SLsma6L9DZRJAhNZfAHwwLadsGpqupLr4EaagGKmEIIRScHLPgcH07b0jTH1aIcJFTBnRMzuamoy +TbegnBha32X2dcCz5zGSuS1rUGbItlFqgmNSITkhQmhqTOl+cGzPsOaPMJKpmpkSMJQAUilaCgzO +jKQDoqmmMkJZ5Flyg+VVNBsO3PGzg2LYYIlWgjO6QCXZIDpoY44UJ1QhkhPVCoiJpU4q2ahIQ5Ft +qBJhIMUkEW9DAEwNBipLgULh4D0jAVU04koHz4HBgEbVokHNzEA9MuTxVZceIAtgoaVi42AKWX9u +j9kLGz6Di9FoLpsXtBLz0QnVmvronXfd/j/99IM/ccEe/6ICg+4ve2e+yynRHiIsUDadDwo5zOM6 +WOyyTZMpZarWHD2x9gN/LY6OzXZme3WjVb032a8m09BUJtYYTywv33D29GhpiV5Y+GT0J4EI5/3V +d32w+oP3r/BZC88m1tx3gKTRReel7/W9gGH27tB6j+Bbp0FH1rrkoSLXwr+q3G6exeR//49GP/yu +N01HZTQ1umT8FhHvi8HI+9LTBOzydC12kW7IdUZSgFWOxzR8VW+4wZItOBEosDMkHUj/lvp9zciW +9RZLxYKkzW3K8APAmZkYCFFacu0LIij5WEeaA9WQOhMgGbGTMbyreZgOc0dO01e/6LL9+Y8DBVjN +SBWTZFEnYD6V8bXW5d0qXpb8HYQpcmmGHPaVA1MpUYDUl8NrTp+EGQROGUFlXsYDYwCFkVFgA29H +NrxfpdVQM4uGmKRj+noPkkWuw5ECcaNpOvJMOWMeog7Bkik6NXQzJcxcgClEwcIswgpLGWShMFdb +qTSHoCqRVvimVFGIWVSTiFJcyXp9xKMjT1NCaZJS4dqeSr0mVS/28OykfZdQRRnkZFxvZqEJZ7/n +zXt//6ee/of/BJcf6xhNd+CTNqpY1NTQwoGbh60+retf2Y99s/ayaDYtxuX3v13uecXWRGezGOo4 +292fznbrukqF09Y2Tp6+6cbltSWOChTOGXOkh6obDeunL1z5P35zEJ+iPKsW2QvU6KeIYT47IqFe +3UtN7evIrle4hi0WD9vKWe7gSoOFAueb8+X+r71PyyW8/t4ARucbRogp6MQth6WllSVfoI1AShXe +mIqMpRv1BdM5sWCorZk1091qb28vhFBV9WxaOXB5aTw+suI8ilExWBkWo8KJS7MZNAImcImqMec+ +SDqhMud9f76bLOMOW+d9NuRRMp1g29cVrfm/BSYA7CYJAGHalk0xwBSQg3Sor4td+QWP7h5SBGsK +AmGrfzM/ohLpGVIqcgvmabcIzRBprb4OuGiwjHcJA0EgGs2BohKYFNtUbN8S8IlJhIrzJ4+Vo6Oy +N41+UqiLCnC7cAZ1io1owQhPJyhJjYxqJANNDC7xfjK7gcBAupxtaGAsIpWuMRqhLkaFowg1pDBG +wFtpLjQxptIRPsJY1qgLDkwHnmdOFOsjmDJVJGgyk8pSsE/WXmS/QbdaOVQu+c2y1yvvJzF5+Y// +aNzcvPCz/xzhQhQk4FvgVt3JR88y1UVs9LEDvTe7F2yJT9MDuH0pi+/966Nvf/PWvu3ppIphsr03 +3dutdapUhY3GKzfceHrj+Ea5MkbpheK9A2ieFqWAbf/GfXr/F0psQiN7354s32IiKakXdXeTaLVL +9ixo0vNyhPZZ+k9RHyinYqAeOFKvDOIw3r+x93v3ceDspjO7IVSOKmYUX5YhNBSOx2NXOKgymWxM +UrS49x7E/tX9Zx595uEHH9u9slPNZhfPX7zwzMXNza0YQjWpgzZCjkejpfHYDcqi/P+5e/Noy667 +TOz7/fY+505vqHr1qlSTBmuWbVkekQHLCAgGk25IOmCgu7PAaZZDAqxAOqwGmgUkNE33asK0VppA +kiYESAjQxEBoDG6MMdjgeZA1WpIlWSrVXG+8955z9v59+WOfc965970qlUqlobOtVT7v3nPPsIdv +f785P7h/+frbb7j5tTcfOn7o4LUHe8MegBBKgUtsgo0Wt1W+z7mSXHretI5IqBdnIyRL4y3RpAOp +CwKhVkolIiMdJs86IVItiVBSjWVtNGgzT/LyQ1vrFFKT6drBtGvWaaglk28K2SgJ683OqMlKl0od +AqkntMa+1t1QUl2AOhJf6quowlJ9SWNQB6ys+uGybp2F9EROqZZmg4DTKotmVcTQY5/KsEn3H6ke +ycWIrs6R3QyAwEEiANIRThgTfidLv4GQgMpTokCSXyFCjOLgGBh96EkUywL7Xp2GhR6P78+GXuot +FOJpIgqdUQ2nlnQvV80vF112Xd+gNik3wyQxRvX9O/6b/3q6vn3+535loTw9dWKRSSaNHRTrch/X +fJtaN9Kz/cRmhVnpaNkM2NQs//pvWnrXuzZ0cWs6LUSma9vldFqF0kjLkA0Hh48fP3TkYLbQs9xn +3jtX+2DQ6LMsbq5N/vhveuFJ54oYd0wBClTIhX3BckCOvjeesWLsMG3FzNhhduwI0e1DppZ1UgPm +8IBGDAQm2EqeVwoEOY2tVfeJfHLd0mR7e6Ofl1nm+gPzIpmfTicx2jXXuIEOxIG1G4U559Tp+pm1 +Bz/z+Y995JP3f/rzJ0+cqsoYq6qYTJ1IVVUxhmQhgZqHQGB0QucsZn+e9xeGyyvLr33L697+Dffe +8prb9q/uB1BOgzgnDkxkbVbcw+Vhx06SEtnBuLQTJ4uaJFVgk2lgBwla6oJ64GsknGFz7V55KZfa +l6d1X7PGaApgzcpMZzXlSlUSYMSUza+Jg2nUm0CtAqoZdNJTJs1Z+8qAI0VhiEhqvZSZW+ApiHZg +nywdlGefCjrK2KdcUDc1ANxSMso5YiPwOBSODrAUBZvYizijRhc1RQIksEO9E8XkKEcAYiKxllLF +VARwFOcQaWpwomQWrAoIPUZwaMw0rg7t+v3wkKou3wc0Y57mW1vEFsDVHWK/c8V6lKRhbztXV9UY +g+uPXv/j//iBxX0nfvYXFy485RRjqxNvaccs0OVE6AhlrUfrHH1jAzRtCxAFN6WXfd03LX/nd01H ++8ZbpTnEIlaQqIRasJgNBkevu/bIDcf7S4vSzyTPFCKqUEm6XKe6+cGHw6c+0dMzMQbpCMVE32XH +ZWnRhg4ibmQ+9u1shQtPRI7RPKHUcXz123VLckjzdmzA2gDBgmBoiMRmEiaTxEpG4gTO97P7ntrI +XFhdnS4sMttmnpkXPx0BMhj0feYzycQpI/Oen25MPvW3H//IB//q/s8/sL22sbG2UYwrC9EBqgxV +EDHvrdZtESZUU0bEiDLGyTbXz/P0M3jkoc994H3ve8Nb3vzl97797nu/4uDR1aKKEhIlkrpmYU0l +KE2l5EvPG2n0PPWfO34gzcRt8Kk53PkGc9o8mWeI3W/lIi61L2ObeU20b7kDzV3mW39fY1cz+Zs9 +waQxsBJCREAUYmj7QBoruDKFGtXnmwAm5gPM71vMDx/xjzDIQHjYuCW6JoI66E9ArJvEKIvgQcCT +S6QM/gAAIABJREFUwhip6qA0UY10REg+JWmTC4CDOIlCoUlUCBHFBUAg0cRJ9IJIUaqqmFBYaqA4 +D4GzkJlmuG61d2zRR9Ilp91aUiBSmr9Z/9urK4e6n/iJn2hVd90DNLsm1ZQqotGq3A8Ove3N4bqj +X7r/4Xh2LYOVzQhwr4PWYoAOletq0NgRVOss0iIR3NJh/o5vXnn3P9o6eKgwlJJNpmUoi2IynUpV +VWVvcXj0+uuuu/mG5dX9Msx9nrIceIdata7eW6xO/9xv2of/oO8msB2jrUGRHbHj+3pvuqZ/53XF +Ae/6A4hCNaxTbAPNE/qOeaEVmdEJAmv/ZK13W3TwhuQOFFtW50BKYDX0vdFkwZ0P1UZVrW9th5LS +ywJJMsuy0WjoRD00H/j1k+d+7zd++72/+2/v/8zn1s+en062w3QCi4oIVMZCJKpGoCJDqu5YlaVZ +NJYRUwullRVKYEKpbOPc2uOPPPLRj/zt5++7f//+/a+65QZ1yoq1I1ZDIGa2l2ZTfeGT7DnbnPz7 +spCy3Td9vtrGuT/TKk0OR4l6ikBSzZlmfWkLfzveiG23y07MQ3Nx1mHjgCRZFQgu77szF+Ijn5lY +lZkC25QNiaDWAi0VoqVwK3kXJd2D1K5FXgQigDVGw+RSoxBUIiZiqkw+iayLh0YTg5qQBhM6MdaB ++Aq6KOqR97A6srffnt9+yJkwecVpo4Nou6rtpW4HXjVcw0XYPslUlBGAgQ6OZhA9dNfrFt541/p6 +deHBZ3NsJ9WUdYqMWccfgh05rl3r7QpqWRsagCuA7eGh/Fu+7cB7vouHj4/LGAirbFyWxXQ8rrZD +LA9ee/Tam6478qrjSyv73aiv/dx5r07FqYMQCjLLsumnv3Dqx352OH3MGbUB1ggIFvzB690d+3uv +fx3uuA1LSyStItcnsmkSzgmYxOcWgueQmg3v084LAsgwNOSGnmJg6AlcsswARmTAAiXH8mA8yKdO +KrgyWIyytbm9tbHBGIbD/mg4HCwNTj954tf/9f/6F//+A+dPn2UZWBaIFSzSAhiJCKMgmgUGixYY +o1m0GGghllUoSoYoGaMrwnRMC04dJwhbky8+8oWPfvRjWxc2br/t1sHyyAIkuYyIpbWCxvqu+lLL +fS8vKetC6hWosdufzK3V5rKANLU7u+srCRdsUju1VLbWxwFAK94mFZWRojUJhKmPkAxw8vBj2xun +VeA4pp7XiOghgFpy8k3TeFvdZpIAUSOeB2oxJxlrkcp6JGjVqA5JAhJN4CXUSslUlrqxBpkhgq7O +buT7bqFX3XYkfPXtw/09CuBEWVeIqYGzK3623aWXJytcTqtxbTdfI9ky7sbZCK3Ave+666/5uq8c +X7N4Zv3s9OwZH6x1rzXMFwFoEa3VtbWVeyiITandEtiCm77+K1be857Vb/t2rhycKOjySQhRKycI +Kv2l/Jpjh4/fcN2BI9cs7F90w0x7mToV71S1zkCp6gHn9PRv/NHkj35zUYs0E3ZSm7qRO3Ictxzz +b3+r3vO27MabqhjyYhJOrYlV3DqX4ky6mNU1j6ADytIBZQCAB1aAXNE39NH8R2wCIugXY2G/Xxwc +FnkvOldRx9MiVBXJUBYLg4Xjhw8/et9Dv/JLv/ypj318e2ODRYVYAdFYmUUwSupgF4loNIjFQGMg +I4VmwaZmUagRlnzKooqJmdT10XX7zPqnPv6JU6dO3/Ha1+47uGyB2KlYIwJt+UKjdHtR3F9f9ja3 +hFpgws7830HY51xvXRDsYlz3z9b7rXtyOolzolK9/Dt3ZMfyrJR6p4aIkVxazB88NfnSF4MrM07B +06ZwGTLA6minVrNsii1ijcgVedIMApk4OIVYnauofiigVjMJRaJKUBedJRt7moagWMpURJpDDpdJ +1ufCoLz71f27r8tcqq8jcMIg6phS2ux0WncXQQeCXmDzlxgnzOov6yAvEQIW42D/wbt/8L89+c6v +/cLv/f7Gn/4lPvXYYPysS37IQASc1BmaHBvDlyACmoDMkPpUIBFa5ofca27r3/NlB9759fmrbt6O +VhhAZW6g5lzoLXJBloeD3sJooTfKfZYxd+pSXsg6tgCQ2v7kfLU92frzDwyxIaaxdn5stBsDV604 +QhaOHPc33WLjon/2QnHfF9DPZM2RnrU5dEfREzqqNN8Q0jZrU6MlFMOCghE+InPqjMPIQlAIjhmm +EVsG8IGBHh/aMK9Eogc1m5alVqWFcry+8aH3f+Df/G//5sSXvjTMBxKrspwQJjQRKAwMtSbMGGJV +W/ydkdEIiFo0c5bSh5gEGmEIFlVEnDF4Cczgw2b1vt/5g83NjR/40R+66a7bqykRAUcao5ggRWkC +9ZrcsfW9/Gr7q9TmMGhGTz9rqsNlq352883uim1utMMhGvsvgbpSg0BpVvsiGdCG3wN16SCKp0Sj +SRQKnFI1VBwMec+blh/+2Nk1i85p6dBLZk1E1EyxfiJDsDSPT0OiYFHcEsxFOqLnyFR8CBBY8l5J +8iaSkEI1cQEmkKgCjSnnrngzkQzOa9ZjT+z6/fKm6/O8dluWOoQYMIEDzaRJIv1iNd8dgLnvZgT7 +JgiZtQIAxiiUw7ffdfjH7jr7roef+tBfrP/V36x/7L78iYf7ZUkAJj3EDJa8IhRJ5IFSUokKqOfg +IPYdz95y6+JXvWb5LW9cvOGWUvpxQuei9/BEiDYYHASogizzWeY1U6dOVcQLRFLQFJp9z1FMqA7b +D32x+OuHBkDtTARInRJL1EY0VmpWTMIzp3R1RZcXqlCqA3PE7TKRuzBLOUMDaq1ht2vMVQBYBZbh +F+CHujBYOLocJlY+O5lunSWQoWdYd9iscA5nVqrlUYjeejrVqgIkUiV8/G8/+qEPffDsyVOjQT+U +24zBrGK0JAwgFblQkGZqIiYVicYPyigpqRZqAlznXLSUvoxmUVwkFUaFw3b86z/5i+2N7R/8yR+9 +8+7XlRMkV9nkbFs7F4igNpnWU+L/T6C22wDXJQtzqIcrgvXuyV061sW7VgoQEaMJRAXWGNdqUGN7 +Us3l0nukK2ROqqm96dbRZ758/P7/d5of7OtRK79kGdJOD00iV/oNkuOGyNTspKAwTJ0QHKRkdgqn +dVo2l0wPOz0AMlIQIE5qW4eJegWZmUSx4FQdl3qTt716cOM+jaSr70cQqpLSKUsnZ0Hqjavr5IG2 +bos0FtC6M1GbRTuKgNoWLYBBFCl4BJEG2uqtt63eetvkW7/l5OfuW//cg+MHH9l+4nE8frY4dQqT +c1pGJRROswUO+26wmC2u+ptX9dqjwztvHt1+09INN/QOrUa6soQEuBGdSC5EKkOd7HaaspdBnQqS +3k9abb5I46Od7EmU7c9+3k2ezToasWZ3kGh026WfltWpk/2VFe07t7aRVUSUclwkcrlz6e407Tiv +tZaExuEjU6z0l474Q0vFvoFfXXQHV60s3Km17FM63YgZpgpTnALOyxNrcmS5zPOJofA+CNSLWPjE +Jz5++qlnhv0sTMdEEIsCcU4VlOQO7lD7F5mRKc+5AcKQvPQNSvEOoFSEgRDNUiwyBWKoRAXSk0gz +uik++5FP/sI/+1f/5J//01vvvL0cx+RvBURS6gxoIo1ZDy+lJeGqNDaTGfXBjhm3K2bulhkxu6m3 +3O2FM9Y5Boe5VZbMBTARoUqq7S11WqJ6OibbtSGVh4YB4qAVNOM7vnrxvvu2T0XzfTGExi2ahAGt +uQGJj0WYROAsuBEAZ6tQoyPZI32KdavzSie3LxrrmtQijSmQYqQQitKZ9WTgo+rktTf5t9zYz4wE +nWhyS0Ha+0XMMBcW+kJ2jos1371og+iNCNJ81sr8tTGGRNKsU5FyN1WBwv7i6qvu+Wrc89WT9Qvj +06cnp09tPnsyrk24NfWE0bSf9Q4sZysLC6urbv9+t7ycLy7CZbGoqlApNc8FPaUZFAInRopJKslF +pi5qnyjNjzYUQ0hJa1lFxYqHHldsyWzgZ61rxZY68ZvT8NHPbZ9f8w89XH7+kXj2fD6uhOtJ4dCN +YN0RYBt21rq2xdoFZBCxLFiU1YEdWtTlIUeLZa/vjq5aP2NV6X1FsXEOmBClYKhr6zLeLhcGY3HG +HMpef/jwAw986fHHe7m3WImLalFTQgdSVKGsHafqhDUVzQRKUhAUqHNumVg0KMQJnehOmCtFxUuP +jGRU9JxJiNEH3v/JT/7aL/0vP/TPfnjfwdUwpXph7TKa+i4liEtqXaTefuHT7sVuCdGasPz6g/ag +K112i+lgrzXW/fOFW2x3M7iuIKxQCNjEgBJitSq3TvQDIGUIyIRBkai1iEqGUNoth/t/75tXfu3X +N4qVvN/LYpF8u0GwrXrDlAm3xnoDFCXlhFHUVlP1QirVPE2lDn5K+qgoLlJAqiCQjvSqpAkBCQPr +DTECrjui73zj8GA/zThh7ZMnknLEYafz5rri6mo5On65DUGUGpP3vkPyzGOdcj66lArAQRFhIUZQ +pbe8f7C8H7fc1v2hJX1kerMk5ZEoYiyDisu9EkqlGTM4NGGGiTMzZYFKs3N2wnWrQDJ5ZouEUNiT +Jz1Cq/VHB5WkGOPMZvCZhC+FU2e4MIoX1nRzqzq5yfKcuwiiofkzdkwQtdMPRsCIyLcL9npZvn8f +Fxe3y6q/OBocvCV47Zsbf2Iq1UTgia1KJ9iYlIvjAhpYjhZHm+trj33hYcaiKoNH9N6JwGhw4p1X +TfuiSsqbESrSILRoybNRTBwQBE3RDKnDR2nJS1adEComaeMWjTAnTkKo+lP3yb/+yO/8+v/97u9/ +T5ZnMSS5s0MoLKU/q2fdFTjxvjRtF+hIw9eww+vbSKddbbd27BLQdhXfekY+rSPOQKbr17O6fhM0 +MmryCINQGFCjnneIrL7u7qXT5+J7z2zFW3t81DgBZpA9XaztikbGKWlrVKfYTyqFVKojoqolUIyi +kRIoFDFrYrBgmUAEfeYjOh8P7rdvftPollUXSV8HaAmFYnvI3+2ozR1cldbUbUEdhIokd6Cha3uM +QzKYGAUKtcSPVSNFtfGDCiGmON6ULLEpzUCQtAioNXJ7phHON7ksfIqkFToTn6LKksaz0bmmSt/o +qEKk48EeVSSaExcmU1vfzjEgxl1IqtX8nBbPPtYLdGTmR5hOfVHIJGxtrBNF0ji2CUvazu7CXPq3 +CbHKDIMM+zEc2iDTYQ95D6ORyy0Ohv1jB0Yi22XpnzlfPLUG9IiNIp6Ybh2pqsVSJvS9sqoeuv/z +62fOqojvO3ixSDrnVV3jtF8vJNKYoMxihEULsLoAAOsCBEzIVrNXpIRbSYQmxXpQ8877qohCQhHH +Ybq++ce/9wfHjl/7d77jm5xJquslqkx6HqKelynrWur1vYDg5W0zeNRIoI0shlo9Ucd37WEouNg1 +d4ufXRn2hbTulWu+Jt1C9KxjNGqFu4jsBKgJmtwOJGiRKbuGZsJv/o9GJ08UH/7DQk54TJAUzlaT +tSYApFHXNR2lug6ODBPAlEMTg9BJLlpZ+klK0UHSGSJSjhKDE+3RLahzttSvvv6to6+8OSsludZH +hRMk1s+GJc/3m7wIxagwJ4ciyWC1lDevXZptdSxvcocQqzN4QqBMQlNyZJd6i2/qaoi6ZHRxUutB +c6SgNBGtXfdEVFztWJIGw0kqepPo+I5YDqCRQ5MfDZEsEtuTECpFL72CduK6Gga3bWeeClVVnRdq +rzf07kzE5JQmy80uCOv8EOgEUSkg8Iql3jVLxTALIiFF84bolpdlNCwmpVtaWLzlhu2Hz2499ZSJ +M6LAdPv8uLixKksJlM0zm8888ZTFUpWKQcr6I4SKqqhzoCQMogksWAxWVRaqADIq1ADvEA0R3azi +ANREY61WotAGJt6LqM/yrI/xZimgIVbb5capM//X//Ebt9x5x+133sopTWtVdgrcTgshFdtrHUdf +yXwNDfpaow2qazUlC3wDJa2i+jKhDR3h8Wqh2548cedGqfJfMiCIgHAqtJR6NlVfAUioeJAiBbk6 +dO/59oM2Of+XF6a97QxT2k6Sw7pbGjk96cmhIIx4Rq0gDxlV1QyAU0eSNBJCQQRoEYQplTGn7zsd +qevFUb965939t93ZN0EeYS7lcActqdXYvtmeO8RVn0W+QQdTVZrpzshBWlXb/EDMPUOtk60zF6ZB +SVW320dvtng0qNluUKl7Xe0pIUgu/qyVIzEp9OrbWspUONMpqaxOKjCWGIpIKItUSbf1pGurkaeo +hkVAsF6srWPNC/oVGLEte9Unt9l8JOwESKTth+gJopUmuUkOikil5Wapy8C4dFSWZbayiNEiUalK +jJhCNsdVCOOoZORTX3pyvL0BKwWpuIylgVGhE1M4EwQaCDMLIcQYzYxUM41GM3NQEogUMYFERHhJ +VgShwBGq4lK5B1VTwjT3buBjGSlSVIGT6unHnvjtX/nff/Rf/oTr51Ip1epgoZQvEoSpKNue747C +K63VqAxo4wbe6hNqDcPzQaXujG/1cWxqKl/xatyta8PO6mtV3q36BUBy302B6NIo3ZCKdYlJ1JBD +y8jVFfeed++POPehcdF7MHcxpats8orABE6gBJOUCZgBQnHnxIYwI4egRhFIrjQiUkoQJmbWg/MI ++5iNnFtUn4eFwfSdXzn4j9+6sChWEar0UeGSmVEopnXkey2Hdt/6qleiSm22HHrHPNFuersaGzGV +bDYuitRpC0hhezijZ8XsGmhBmvWZ9U3bnbCZiFJH4SYfaHDuUZNqUJgK2iYyQasCLUojKiaq1QY/ +ESgA1gwuEFuG7TbYfsdnuNGgtcfoHDf/UVBExHKt4Ia50rSM3jtaMMT+oeXeyrJbHoqXydY5QRCW +ALbBCxiPK7PIajxZO7NWVVX77kKkTFV0Ep2Y1BJAiCGEEEM0xmRfohmsogULMXURrc7o7IJJTP5o +NKF5QNV77713XsWJmXnvsl7uzEFlWpShCp/4xMc//bFPOSdIGa6ZMlqiyWWDJpB7vl2t6fhC2pwc +iq4BtB6ptPvuzD1cNt9sp3F7/gunGN1FsTPtm1Uj0iwhtge1LkQAleTHLwpo7bjBxpET05JHVvQH +vvvg3/2egb1hOu5ZThFKhEUkGbJ+BAcomDzSAIOQG5B1sjBOwLGxMESQsIwEYybMVfZZb9ENllT9 +5Jrl8X967/A/uXu0JGaUXCFIAaMiQnGpx/borc6bzjDiq9J8l/S295vbNGZ/MvtBl7XJ3Hl7XK0L +SWh2v93XSp+bmaBOFsF6sqaaHR3fbqnFpLR9CamizjuGKiJKA2ehySWpTZFHdmo7shNRgE40Phqj +J2aND93ziSkxBifZeu6yHqZlubWZD4dQ6CjjhQ1fTtc/9vD4gadFisLGEdgCNqwox1Pru5Pn1zcv +rAOhM8Aqoj5T8SqiRoZkH7C6VDcrMEgK51NTgjSj1RXoGKmqEsGk2XWAijJp4NxotACTMpQhWua9 +UateyFSKMhRFuXZh7c/f/+dv+vK3aMrsXQ9qvcaSg8DuLWqvSfKitzlxZmZKNHaDhp21anc0po/G +hr6X+uwSbW5dtGB0Za+/QyNQq4nnDmrauTMb6wdPWJfqiGojd9feAjBnDt6qSlaW9fu+e/XYTe4P +f23zmb8MvvTZBiRCwCpFDwGAhEaHDQgidQOE6CZSIkmUQVTECR1lBAyAJfFDVINquBjfcDO/5s1L +b37VwIkFihNoBETMJf277Mhau2hSy9GuOlnDnF9u+vcqMm109sN2TrT34myKEsxtubWpAQm36h24 +A/5sSe3MbAZJdVkVLK8dIGrkqjr5lNqs5a4jaba41sZ7sfNhi2Uy+yERHc4Anui78UDKslpbl6Ic +nOzxk3G8vRWePTX+6BO97SKgdiKZAhOEaNV0vH3+/PkqTIUlnVfNRKjKrKc+8yRjCM47ASyGKgaD +GCy2KcORSiOlMUpPlrLkJoWzV4ik7PjOqTmBN9OU9VkkgF6c+L6IcxURy2Bl+MTffPQzH/vUm9/2 +lmpq4kUs5XtN3a8tLgAzFOaKp8fF2nPiRffuc/DU/ZXsYFmtb2fnV91LXf6Ddddh103k+fZDa9xI +M7x5mtry2fmsPdgBZTTvVc9+NaFqUnY7iDlIrIK5DN/+DStvuGPw3vdd+NCfTqefdNmmi854HsJg +VIVLNv3QZBdUFSwq+2BP6EXViYhlwILJkP2h+p7JKNx4PN77xv7b71xYHGmINIOK+RQgqkgTj9pk +YNrl9tjdG9BZ78+rAy/ROnklu2gyu/W9cGhLB11EQyMOzOVgap+knjrJjyFV9WZdfi3F8SbJvEsc +2Fhc6DP2M2vsPrEpyxA6irbUuqnJ64s0ENa6sGEXm2tl0uYnpWIrYqMaiz4men0VN8fjtS2qVkVV +nVnTp9aBYJimHAETYApotM1isrF+DixVnHNOADCI8z53orjm0KG839/Y2KiqsLG+WU4njGKkqTGS +MTYJR1OnEZbCqAmauMYiRIgTJ86rlyyvgsUYVZWa0XtGWAAis8yHGEIVTz397F//xQff/PYvQ40F +tU4BqiAsUpLSrrFxv0ig1mVGl2jdhYGLQK3smHHr6yUkavfs5zW954SmuZ8/v0ul6wFN/LWg9vRo +JIFmT99RgzR8bbZ/BEipwqFwFDM1RxVEo4Rot10/+IF35++4Z/yBD6797YemJ79Af7aXw1uGmJkf +u3CsMgVClJ7GTLgEzVV60IHAR+sRGbUvflSODvprj1ZvvWPxjbf2Dh/wHihKZvWWYZJyoychorHR +7NkhXf70IvK17v0wi6ZXEUfnhmRu28eeCFivHArENZQ72T1Vtc1umKapIanhqMuj7PBKItjSRAgk +/Go9VX1Hm4YG2lpG1sGsNmXbjKuHNP9KnaTkgoMTwM5EXpgashIOQ99bzrKnJxXHFS5ETCtgG9gE +3HIvxLg5nRTVtC5aKCqZRwZRyQf5yoEDr37Nq4fD0TMnTjz99DPb21PRwKpiJAwwI4BYx6gLhKnQ +TwRUoW1GS9LBS+Zd5nt9FW8RkmUpM7LTzDlfsIww1eDVxWihjPd/7v4zJ06vHj4YiibYWhq/NaRu +kg7mXH2+NodWl3PyxfhaOgU7HA2Yhb8rmN57rhE0+/TlX6fla8kZpQ44R4rGFG0OBDv2u6SM6b4p +SQrVYMl/FjFxd9QeIkJYqCzz+oZXL772tuHf+8/KBz47+fhHNx68f3zhKeOmL6Y99tUtmqhoLgLQ +wfoGEBmkH10/LC7o4euz19zav/mW3k3HssMLzJkVtCogd+KAKEiWRycg6+pT9Tra1cNzW8KLQfn3 +iHvfvR29GNDWnRBzt0Z3QtcPUwdhBDPA2LhkdRyqErsgRGKMOujn+w8UyNqH7mblZSeIPf3XBT7O +4lqXmnVTY7abSwNzZjitIFBaKIBM4bDh44ZXlIIxcToZOkvgPCSOsilsc3ONVQHJU1eYEy8Shb3B +4M7X3/Ut7/rW9QtrDz/00Mb6xjNPnXSiIVlQImOMKb1+/f6S3FtApPKnqaIRVVW8E+/gM6cuywd5 +PjTqeDoxmNIZzGWZVDGqKDxjBOXks6cfefDh1aMHiVjXgUwLuY6HF6kN2rV9+4XMh4vtZ+jQ+Uvg +xZ4zc07G6c63uYxmVzyxu8+ZFMFzn1/OZbu4lgzZgiZHaCOfAsBF7HdtSw5pyianGqhU1hNCREyd +IxiMmXOvuqb/qncM3vmOfWc2isefKh794uTEs+HM6aKYZMFgFigOzqLGgfeL+7G6Lz90wN14w+j4 +0cHqSIYZIqEBAVGV3qWEcHWaQgFoYgJ1O0toN5lth7X1WXspcK0dmK4Soft8L7DtnlLdG831wgwd +M0tkl6n6Jpso91rZKnWBBppHPnj1TdvZkJVY08G6k9W2BjLZBU/d4y4v6x63eeXa/MCtts5whjhL +HBD0BCMiM6ihqnCywpYBJXABGAtKoipjtT0WAEr1DiLGGERVIIJ9+/cvXXPwyKtuevjhR8bFNOv7 +uD4mUyFKa2ZCbEzCBlEaiSgGtaReI7065zLfy11PJRsOF1cPHK3Ip08+y6ISJ2aVuEyqQgKNltEb +wCp+6QtPytfcI6owUEmoihlS+W607mwvfL/bPdzpuK002M6Bi/28nUitrWnuc3SY1ByiXfHT7wav +LmJeAQdpdMVmVJW0Te5UPuhcaOeN5g5Y5xNLZkikYHOkeSAQwJHRLDFtFblmqX/Nawdf/tp96efb +keNJqArQlKCoZX0dZehlzouk4vFmnBozgoATFaFoemIQQku1WejQ1RfOdBo6u87c+F5daNs7T1F3 +Jl2+RPC82hwL3X2XvSciU0gkhSpEMieDO74XKSGRkYuvueH8zcfCg6eATbSlSDtMLXZgrvW2lea/ ++t0b+VQ6ANcetMWoWvspkSThs4QXjAQZMSA2ItZTb5bAuRTg6WVcjKtpmWI81fsQgpk5DKoyOM0m +29Ptzcloaf/TTz8zGU8180HBaGkjV3HGmBwrAZIuxb1bTH4e9MwSA/BQhfZ6g95wdPjwdUeOXZ/3 +RuqHT37xCcbYz/vac1MibsfEEHrqY1E+e+LZalJq7qMRbYYqCOoCc6TWUPcC5dA5CW6OamEvBJn7 ++Zxs0eX73X+vFqK1bfdD7p7Jl16utUwMAMlZlPWVan8UtpVfuTMn6x22+zpoJdUmCqt2kU+2pTZh +Rbo2RIRGa5wF0pkyFI5GioV0l5RsTAMohihmoKYsHmjML0zKiabXd3qkDejY6ShcEs5eIjl07mku +Z4SurHWn3e62++WBOv96cvdL2gcmb2mRuoBsmiYietO1euS4PPiwyWYKuWUn9VCt0mru1TqvtQbT +NhlRF+P2eIXOARuINIAIEesOELhUmColCh4DZ4CY983LeHsaWDr1QUyrIACjVeVUfVaU1dbG5uc+ ++an9jz22vbG1tLC0trYezaLRotWdk0KixUgHg6TwJ0BNRKCSPJkgEKf5YLhw4MCR1YNHbr4q9yU2 +AAAgAElEQVT1DpcPJiGOi6CC6XgCCX2frQkwmcKCg4tlPHPqzObm5v5DB2JpSastYIqKTuutUZ68 +0Fmxe7pjVr/2HNBwkSnUnTPtmVcL0ebuvrtdJnHr4lqj+pDWQrrrzJnDeb5W++a1Um1jaU2Kgh1j +az1Pm583SxskJCZhiUgJ10TMNSHyvhMhnLRHzavtLJHWVXCub9quaOOlsIvWXKqXr6hdFNfQiMG7 +JcSr3vZAz64o2HzePoxY2haYkoMBdZWeCKoRIoyxd83h/LU3Tz/yYZ2m0ks1rrVFCXyHhbW+uNgl +eEoH0bpsrmtGaBVzXVMpaztsbE0TFbAOrAFcWqQKzCIgQoUwBqhDRCzpvLtwfu3z991//sIFo1Vl +VRTTophGixZJi8liICJMZbhhpKUSyGwqgxuCh0qgKHPnFxb2LS7uC3Sbm9Olg0s3veY10u/7iJNn +nj178mS+sBAZYxliSn8UuHb2/Hh7vCIrhIGupRJocqYkK2kbtnXFc2NHjJp1b8Ts1L+cW1yMu+2+ +11VvF0Ox3X92H6PVrzUedunDegE83yzFs1YI7omPDdDP7NH1Y4MqLSIme1RL0ln/sE6MlBjhHsxx +z3efo8ndgX6RQA2XxrUOPL9Yt09tfvPB7B7T7CrtU6VAUyFSIWyjONIUJuKICAqZ9UYLb33d+m+v +jKZnBVts6Bg6BRbcrDNHF9pa8tV+OBd4gM6fXX83zB63eJeUa2eBLUAHOcjAWINDOpEEhJGhDJOi +PHX67OZ4i2bq3HQ6nU4Ks9KCwSzFvjfRmqnf6m1XI0Rq77ZUk0XqfDfsDfpiura2uXz42Mrigfy2 +0dbG+qFjRx578MFHHnhATDX3IVQEosXpdBpCRQpJl5KHAEKTZLwXSUYaTTmldI9pfalWh1/vEIc0 +07sDPSeQirQh388xi/aYSy9+6y7dtF6Spu8S0nTzZzN0O0mJa6L1fJ++ZX9NYPceV+juIl2ImXmH ++pcN1O6QMKuzBySppj7Yu8NnxOTOt3P98OKN0XPwtd3P9xK1JvMAao4+uyckjpKcZEgKoojQXMIi +iWln2ffWN5y47fZ4+kmRLTb5q1qeVTWQ1NoT0CFobRH7LkHrEjd0PrfOD6UDZAAiUAIBKIFxUq4p +RHwwCTGkkGCKmDioJIWxhDDdnCKirAp1iTWDZCxLi0HMkaSkUNn6nrVSQwUCxqgUGsyijyJOYoxV +Wfaznu8PRDRWHE8no9HCwsLCiWefefVr7tzYWH/ogfuyXi9OSqtCKKrpdBpjbN6dO4AjEBEDHUQo +pF2mI9vOwKEWj2qdTH35hF7N0NdAx5npJ7KH0/orqc2tl7k+6crF7Vfd03b29Ct6xa5Ui0Yxt7vt +SS1TUkXWTnDSEKpUxyVdXBrC1mhodupmzV+8+7LSCSpoB/TF5klo40Nfga3eTEAm5Wf3Oeu50PwL +AU0pjqCIk+RBavl1x/d921duLy6SPkUssPFZS6BTzTKsrgTa8jg2x60ZFM1pbTnk9jR0rt+KorHB +tU2gAPJ9++g0EmwS7zK50oKRKVyKMVbFpKjKEKpQFEVRlKEsY4xmjCxTzhMooalODlIwKUnS2GQz +rS8KVlWoyiqGyns3GvXPnj19/tyFCxvrS/uXlxYXv/j4E71er9fLPSVzHmbb65vbW5tkyvYOIuk0 +E6do8EdoybWmxp+LtnbEkKSjpCFNnLse3cRZ2fZ1sgXNSGuNwDNDMV55rV3Vcw0dLOsShXa1o+lH +XOnbJdxh6r/m+KInz94RaVSlE1GTihsAItbJxtF8Ke2/M9dsX22HZTf1tPbE0xevaXcbeQW1JKfU +SafQ+t/uTA4VhWTiHOCY8vam9K7J+UCiBeeyQ99wr77u9RWyFm6qplJBauzAkMyiWBsz31K5rhDa +JXFduGy5W2J8oUkdPgbOA8F583lwqkBkTFyLAGC1H4XFyMp6ISAURVkUMQTEGKtIS/n+4OhAFaba +KiJCqFFCiq7SqC6mohg0qAQJVVVVRRmKQkI4eODA0mDY99nicCEUIXd+Mtm+cO5C7nKl9Jw6lbKq +1CTv5UJS1GCNCQxol0Sa+x3/snZ05loX44SU5INSa59neFlNBqTJ8NeEqqfkmN38Qq/QSdu0LmrM +kZS2T4BdhPSFtY4c2uVuu07bhbz1h7VDqEjD/+vP6CQFBqPNN8s9r95lZO0t2s+7DO4FvunlNP+c +zLDt8ZcGaJu71vIVZH5Pm/s3dbA2GqUkqaT/iyGObrh533/+jac/+bGV6SSlGtUOqCXkch27gXbw +SzoquZbEtX+2Im17QWlE2tBBuvRVlWLdgc2FYTnyJF0tdSJFkElK4UiqOjOTKZDFsiw0qFOlwMqA +mKy/beE0IFUjSCmXXS3ApcgVIwNNaDo168Wtyeazz56YFtHoBqMlyXpnT54cLgyn4+3xxuapZ06U +1XjgkWd+MjEi9Pv9xcURTcCksbPaWaAFFKYMU8Csqn5nAGcdOIx1kqOUCFlSfndptWu1vjzWyUzE +apmTaINThekG3XXyku3/z6t1eVlqF3vgLhDM/fylbc2WXS857GiCkmTb2Fafc1Ppgtrc+76U7+Ux +2+lzX7OjAb26AVzP0aT+3xx9nWdtu9SQDQKKKBBNfH7477zj1O+/f/vP3ruAKjS6M5u9Wwtb7XbX +wlZoAK5tOht9FRs0jB2ux86vylrF5seSjXsuOCfOASJsCs/UuZ0MYIyRtcIQRKhKU3EqQNypLEA2 +bgFpVbjk/QKCEk0MFIlKAcQsxuARCrd97uzJ8WR68vSZ1dUj4jzhDhw86Dy3tzZiWWZCgZRVUcaC +xv2r+xcWl0NsLBuUmjSlzkfKGppC4qG46ERvPxcmB+lUhURoVJEU+tUZuGaDQp2sK00Eauqj+pXb +K+/J3V5pGJfa7uk6h27AHrzmyiD7imiR7HGwY8qQHRXEZXjevLy7TrrjpersYddI4CWcN92p0L3v +3EEXebuCj0LNobJy8dh113/fP3zy/kfyZz6bgKa1bHaj2btyKDr+uuyc0wbDowN/6Gjf0DlI2rMI +VEAFuYDe+YEPo4FQ03P6zHvnmFxdtfYUCun+ZqhqnmQaE7Bog7WsDWaNyE0wCYNGpvyAqKPzogXQ +2bR06te31qpgeb8QQS8fUvzmxvksz9YvnMszceJiKMrpNJZRgKPXHcv62XirVCds/DpQp9Sq3T6b +9OtMER0XS/3C5qe1KlfR1qNsYZpM/jrNOwKp1F+KCdpJdtMVWi+yzF6xJC61PVnPnESye4ZfmiJ1 +L9Ju+S+87ZaRu1zs0r96WThaaumOvi0PuedUkF0pWV6y55vrmjlhZ08G1x5YSq9IOGqs4vF3vnPj +Bx9Z//ELi+OnSiAC2SwqoYG5LkLNnYBZm2mX03UP5rheADx8hWtO5VvjgwP6nhNfiTjVYb8/GRYs +pSinJaOoELUNgUgJ5tNGCYpB1ECtw2Ca++wcoLYNAymcAVSqRASlGEMlpQanhVPvivG6xQriqiqE +sopSCSIYnZgxWBFV3bFrjxI0UqyWTQiQUUSTlxy0LfFTD1S7MtvhS8MkqbCANHWQzBxBFVOKODS7 +izUSdtvtoIEJsaGNka47GWbUEWloOtNgDjVeUTC3J3HbjSO7T75Em4P77gWfb+suKGCGSVyOHPoy +9nb7YD7RTWkCUC+2+13siV+8d5i77NxjtCfsniK1C7EARlVEg9Psxve8+5NfeGL8K7/ncaaCEcg7 +SjRptGyt+qxLzTibfrLr/DHTFTtailomjQAhBY48LeXaYq/Kh+KcOKcqIm7UG24NqioXtw2GgqAl +8kMAiEIllGDtMxJFYaiT3QtYO+KmKMCk1adAzIxKoRkcDaRU4qQqKtfLptW2jdNJkerMEEJZxlKq +2Bu4Yjq2GEJVLS8s3vya2yBCM1FnqUQpG9gXoaYaMZoSsM8MFLt0tjX2wkBGE1HNXMqA6WA2Lrld +2mbBM9vV+iRhmPZ77uiyXrsofQ9VByAaLWXLrK/Z3KJrUAIwb8RonmgP0W9+7K6GLeJ5Lek5LjaH +I1fAerrLoXWtuIK3uIR8dplc+GUEtZaHeTROQXv2YHteioHYvQe+lPA8x8+7LzMHec1pAOBEg4X+ +4oG7fuwff/bMef7++zJZC0ilwmoY0otwMXQgrGsVbcVS6WBZK8CmEyogQII7dnKUn+5V0+WBukzV +qXdKinMri/s2y2oSK4s9K6wKBUzaUYjJ34GaxFRHiFEUVmdpYpMdWoWQ5C1rgAg0RVWBFqlCmoqF +WFkMVaRVYwhGtiCZC9FYhlCWNKuqUG0UrFjFanXf4ZtvehUjCZpFiJgYLCUtbCkSDaYkyG74O2Un +Oa0ASIQvRio17ymAsiyfPGeffip87ovVoyfiic14Zp1PbGJaAWYg4XD9Sv72m/qvvbl/183+LYfc +yqI4jTEyGlREtca0Ru3WVJZh4/o2T+L2nB7db6/KNL6C68zdfW6GP9/n2ZOUPN+f71pEe28Sr8DW +7UyfNLdsjPhpmXb9uue6eG6fwa43f/Hanhvv7ruLCECzzjuoBQsLx1/16p/9yU+HQv/wvYvCUsSR +2iRiYwfUWizrwlZLxLSTjbIbwNACYmzUapYfvHBo+aROtocjukzFe9Uo4qALC/sOHTlSPIrHTj6T +DXshlFbl0SJ8FChIUbFk+gCEqa5S8nkTQEOSAQkGS/uyJceP2nuNVJEmaQ000lBOC+/yKIaJWQgu +y2BM+XaDRUwLVNFKI8Jtd92ycvBwtVUhFU40BlBYkSIO4qQ2PKslhZnILN8RwGoR2qJBnfRyD8S1 +zY0PP1D+P5+qPv1w8ZmnxM54XCDGDkEQqFFgjmKi8mRe/kZvgqMZjrpvfHXv3rsXvv7V7nVH1Hkz +s2DQlG1PU7ayFE2nhobAtoL5zsy5hPrvcsSry2lXthC6POuF3L17kTa5CC4DHC+m8Ol+u6NVeKWC +2pwOJNVFphlVRKBGa4pOz7ztxdhc6r6XRjjdk6/hEmMARKGAaqAwlnHlVbe+/md/5r7+cO13fndZ +CooEEo2FNGvEUgP8bI62br7JVg7V5pxWMVfbQ0WmpA0XxzccfVbiJgam4tUF8RQ67/YvLK1ec81N +d9yRrex78k/+qAqGLIuTCBBBoSSSSqquZdhmHCSRrKiAGEDENFQQUUsPT4ooQCMELqXHihGQMlZm +lrncTCbFxMfKiYpItCpOKxQmYJAQibfde09vebh+fgOqBrGUGql2IkGmHnW0/c482VmWTBkgRCIA +Is9yMHzx6fW/emD8B/dN//pzPH3C4/xAnlZXkZtAkKRQbEzOjhCBE4ieEPYm/+5Dk3/3x9NffZP/ +srsX//4be193K/OcMQajCNVUDFkmZIwp5qJOPabtHGlnRTv1d++Lu1V1V9yuePK/8CXT1cNcJueY +42KYxdndNOIV27qSJUnPpv5mKty1k9Zkl7127irdjpvrxD178yXonZ0hSZoXS1kIRESJqN5isAO3 +3Hr3L//CAzff+PQ//8UDWO8JCtb6tS5Ha7030BEzWx6XwC50wrBi88NKMCHDcFDdccu5/mAjhOid +M3iKB13mewsLK4ePHLvx+tte//o7+l/22S88eN8DD8B5KhnhIIwgnAL0hJIQmjjQILOeRQSUkB3t +l9SVp012vH2TfKziEEIlIT2iOIshuPQ2ZlJSIRatYjx45OBdb3xzNa6YSC9QG2EiDVCDijov6AQ8 +tzkRRGr4VVh0dD6Tk+fPvvdD27/5Ydz3ODYu5FgX/yWxsdqYEdzp3ZlihgnpxMbEuO8uCM6Wj94/ +efRD1fvuyu9++8IPfEX/3ldbnlkMoJlKMMmoojQRAcVSVYYZ4a47jefUKe2HL2R+dov7di/+UiLC +xSDpYsRt97e7KcIrmaO1bU7PICKeaX1o8p+qxVGVHdK+J1PbU5Uwh4CXA3YvUqvNdIAITIymQieO +cFaF2F858Pqf/Ke9m2969Od/aXjfJ1cayTFFI/iGi6GTdbKrfcOsLy46wQYVUBJ69LjdfuPG8uJa +GatgCnXGXLTX84v7Vq659rqjN99w4LrrFg6vHjt27J57v+rzDz6kXlSdiVnKGUkhKBHiYakahzUl +bJJeCaxrEYGEAhqSlZKaCnOntG5Wu4QBKc+wShWncWrO5RR6ikDUa5aBFS2yQLjtrjuvu/nG6XQa +a1CjxRhDjKEySG+QeXq2KsbUCZJso9rEs5NOcpeFj973zM/8bvVnn88nF3KMRR8XbrhQJXNKCnDV +jqGh3SHQuDc7iIusUKqWog/i/KPFn3y6+Ju/zL/mbUs/9LX5m2+NGchKTUjVqCrJkCyyazbOTeM9 +SQquFN3moGEOU15iXNjNOS72ALtp3X9wNA2z5oLW01YmRVCBc6o7lqYZFLvYu+0ett2IhufaMV6k +RkBgRhWm1EVQJhMeqDAzrx6Cc4889Plf+p82fueP+2e+2E8WUlUlhciSM/2svFm7vyVBL20LIIxV +EyxV5PngG+6VG29c02wrcquK20WoaLGfj5b2D0ajQ9cdO3zdDcNDK35hFDNdWVl54tHHvv97vvfx +xx6zaSzWN8WSxl0AQBPhBAQSVUhLpgHTNuFzyrBZc7j0UGzVfWgtHFqfoXVQrThV5+BUIBCnChOL +mFj4qV/4V9/6nf/gfLEdaRZpZYi0UFYWKjgdLQ77w4HPMuclFZohKao0MxUR0Rg181La2m+9b+uf +/CHOPZZhHXKCOCuMSTXZLZ3TKijReWJpntsa/UAS9oMAgsryiJt0cOfC33/nwo/93eyGA6QFYy1v +JHtLV8xsr3xxGeJia/i5T6iJKxpLCdtZ/rKAGnatuC5/3H0mGiCeE87+A0I0dCSGnW1sYxpUkAmc +ah2YJzVytw5rlx71OVa/e+p0D16aXmNjAKkdAEiAFAmAJ1RSmuVUJ5tP/uWfP/av/88z73/f4MKz +A2AAZEDPSYNf4gkvMESGeaNnWng66Mejxxa+6p7FN9yFG45tqavGVTWtCmMgnZNscXF5/8pgNOov +LfiFAbKcmVPnQC4vHvilf/HTv/iLv+hEJucvoKLU1XxEHUWjmSZxOsVkUiAGZ2RKtmZ1sEFtRmh1 +SahlstQfkjgsJEGbCkQyhSZu6Ew18+OquPGOW371t35j5dpjk7IIjAisyqooi6oovchw2O8vDrNe +7nreeedEU+/W2CSQaM45xPL8z//euf/+t/vFyQxnFU+jAaZ0ZpwlxWg6Ex1Eaz9Hp8JO+iTW4T2+ +wG2Du7923/f/A/cdb6I6KcuoXutRF1GQlrJVdxx7L+q+8AImW+vhV/sW7L5FvUykfT/ZMz/a1Wq7 +Jac93zF9mGjOlVXnesnanuwbu8wF7VeyOY0QZEIV0VTlS9GtjnX5L3kxatb22nMC5XPeYXZTf65n +AVPgtDLpt9EKS0AS7UhxqmJx8uSH/+ah3/mDUx/8QP/kydGFDW9l3mRxak2fDiJZLqO+5j3knv2B +O3RodPcbh7fftvT6u/TwYWbDEA20SuANUKXAiUChouqdOE+ncM6pCMSMg/7o6S8+9h3f+q7TJ56O +kyJOC61ACpWaDAgQEU3eFNqIbWKJmrkGvQExpGweSfB0kQaYE9T56lHHIIhCnQihIk6MKpmqQnUz +Tn/4x37kH33v926GogoxxlhMi7Isy2nBEEb9wXBh0FsaZf1MM+edT/FdddUQSNLGZd6d/dXfX/vv +/ufR+AmRk8JJwzh3XP/aaq1ovmpHlLvGuI3JDbPBuUmzWeKA4s6Fn/ze0Q9+oy4NYhlEXHJ3kXSu +NLvTc0lYu7+d0ynXTzvnNVJfF/WsSpWEGgbRAYuEYWz2l/Z1n98q2FPZPfdsu6XgS+PaKxbLLtG6 +ADdnJ6k/3ygCoE6YkxAVJ0n7jF3c6srevLtp7Jbnn9+ldu3nF9v02H5VT6R6tiXm1kgr9Q5rNFCc +dwBOPfH42iOPTh5+dP3TD8uFM1kMMWwbo8uXRovHsmsH/UOrg2NHs9VlGQ3zhX35wYNu/xLVM0RU +ZkBUFTZRkK2Xre6UtoWIAilZfIoJ7fdGv/zzv/DTP/XjwyyfrG26UuFIjWJGSHLDl6bQXXLCMQKE +g6NEa2oYSetvgaR4M9E6PZOm4u/JFw6Zh3MqkZUTB3He9zeKzbvvuedf/Nz/ePDI4UlZBLMqxsl4 +PN7ejtMyy/Pl/cuLC6NslGs/U1XvPFJaG2El6k1MouRZ+acfO/Fd/zI/9Qkvz9B24jrc7NilvnAd +sGs/7+rumhyGM9rMNg43SaZOUNpdvf/q+/b/9Lt0/yhWQMqFDUIhUeAhiuT1V9/leW7VuAgUppnW +8gQQCpqg5tt78bWaOT4fvnbFC+eVzL8u0S6N3anNbTy7h0nWp1Vy7HCkdxBRlXqHIa9mlfk9tW/P +9xp7rY6L3S29BIB6oTfzot1Zmy9JABajqDpX5wk3WCgKTQ4FhryXac8TkFqEajJHWkQwo9VlsVLJ +TqaUfKSw6bWUd4kkFHWhx6QZIMSrbG9t/Zfv/i/+6s/en2V5tT32ICNBE1Focl/TZNjZcU0i1ImR +SWWWCB3bbO1aWw9UQUoqhiAGQhVeIc7lIqDR575Srhw8+FM/89Nf+fav2iqn06oys7KqyqIotrer +oti3b//ygX3D0UD63mVeNZVP0LpbFc7AzPkLa1/8h/9D9b5/u+hOaQxsGFb9RJ1RxKzicg65OAt2 +c4PdfpvYXBRVtTK+Nv+e7z3wM99ZLfVdFegyRqNSa2Uba/F7Zx4K6oxy0ux4XZrWKMz28OntPiyl +2SWTokOaudmyOO4gXC2Hsi7svffs3b2k92Rhc2g192dXTLscjHjZse85sbtrFkgcE7uQpPsrjxRR +LWogUyIzoA5NlLRKX+ibd+lu+9xXsJm0mVNa/nXxTa9G7YZqzhy3/BNdQqsKQRWDRgMFTlzWE4jr +S/L8tGhKCQiGqEYxjUKoOkJF4VTZdQWZmf3p8WvB2ChpvwYEDkQ0Lu1b+eEf+ZH7P/ap8xfOZ/1c +JgXgTQKkDlZi4yxdg5qIA2hkU5JLKEwpyghAhU5g4khCzEmNxVS4BKrRYp7nmgt6OhgM3v2e737T +3V++VRZVDNFsWhTldBpDUJGFhcXB4qDXy5mJujo6p1VaqQgpJuZUTv/Wv9/+wJ8sumctmnac/jAr +WrYw16YVaFvX7sy9FHDdHyIluaP9f+S9ebRl2V0e9n2/vc+59w31auqurupWT5JoDQhJCFCEbKEl +QzCsgMU8CgSYxGatEBKTAQOKBwjxik0CDk4cLMewTBAYMAgMiYQECA1gTS3UEmqpZ/VQ3V1VXcMb +7r3n7P378sc+57zz7qvqrlaVWg3s7lXrvvvuPe8Me3/7+03fT84qfKz5+f/z/IlrNn78G1EFz8lg +3glrEjAn6B1bdnfrCPVAhIFu65MkGsd3m71fTJIZvGwqBrmKNJl3Xe06uRLAVSLEnbHAMjWsdIR0 +0qBhCixN8ksEN7rn3r8znrrD6yVP2WgZPMUS+xyC2n5b+KLYvYQVYzt0fJDhsOFH3/Qm0kCaZCA5 +OAJAs7J1lbTzz/jil0537GJ7erx6F9fQYdXVcL4Oz55gIBWsdLCwrkYoAxne/T0jzIwWSZLRLNAC +COM42ljs3PKDCpQKtH6dDs+g/OuAUr7+5ps2Dm68/Xd+t3JNzDKcxQOITlCtAFhx5BT9Dy/oMVKX +te4sy0dLIWnv0EY5EWMIoaqraTVZn1gdbTL9ju98w7d++3dYFZvcyrVomvls1i4ag1ZWVw4dOby6 +thpWaqtDsFAofLkwQ5fzH+vYfOqhh/72z6xc+HCtprvMvTmAg9ZTga0w+nFM1rCX5Q0vlijHkoMq +A8S55r1n4otfED//Ocy5DaAZfXBolcAKsGe1dP+OXnSTsrwqf5VGFfZMSiXLs9MlgAgnQHjXSaKX +Fu4OWTKqe9cgXXAwgwE9YUCZLENAYTlTavhXfdXEMIWGMZ7J4xfP8rGfpmHYufeOASiWxn5EKyP8 +6I/9g/7mdZSghMkweDHK87nie7Ufkof3n8ZBejjj7s5/pedV3Did8UFSMDCUYIOZgSbrTBiipMKK +NJRtQGIu20GZu2OURGdv7uLO8nQsZkwgXQRe9sWvSDn/0R+8Y1LV0dTp+QzCShLErt4gq7Npowy9 +pGR3h0qvri4Dz9B7GWFAoMV6Mp2sTaYHV0OsneH1X/91//kP/N3p6uoiNQCblNq2bZoG0Nra6sbG +xmR9pZrWIYQQA8kQAm13f6KDVIjVoz/7q9v/76+s4EzsHWcYEa7hXo9BbUxXhoW95FDjPkQrY+x6 +67YOJsvnZ49g/ctf7kcPyrN5acOAgXt1dGpsBvZTqSyugl9CJ0BQYBC9E4HotKFUEnF7WFKH2hzY +X/eO4FASKLrUH6uosqA7ZH8XCg3H2B3ceUr6qdOd+CUXzpMQnGfJWLKLL8rCdlfQXuAeoGP8+lIX +GH70Tf+gdzNARUm61BX3m5VhN6J0hVe1dJZPF9pGoFY2ytFD/szHcGtI0lnqMU0s4cyezw8tl8CB +DKFQSJmhq8Pcv6uMr278RPsrgogAiMiSka/60i/dPH/+3e9771qcREa6F+OGpa4KnYvGQcAMfWKO +ZVNZrCQCFLoHSCOCWUVFWECMYbIyWVtdObBuIVaT6Ru/53u+6/u+e7q+3qQ2m9qcUkpNm5KnA2tr +Bw8cqNdXQhWtthCDmYUQBsjubh9kdeUPnnzsf3hz9cR7q71es6GW1vofBwY3KNxhL7oNQKa9N6qM +MQEcwMl2AXSHD55ttlZWv/IVhuCSQ8XBiH5vKX77PqWvE/EX2MnKoVgBKnApdonG3fv9v+pByilJ +mfQS8YecyEDrAlBulgUGoxmClcizmdFKiLxzZCOXyG0xQAYqWvJw0O+LZFHh7qbWCBDHa35o0Pls +AzXsw6wlZrofwvZfwmXiRhyqpkhKyESQzGFmxbUDU8cCrsYYLmAsKXO5391VJu4e6Q7WBBUAACAA +SURBVJXboexsjiKeoQiIYxFqgCpJ9CQpQnLrPZBAR7hUTJW9Stm7x9/j7BjuQ/ene5OfUEop1pM3 +/ZP/+Ykzp3/5Lb9yw2Q9VDWbBQQ39qXvJaRbqkNMEiwHsGtGJUolS0TqG0K6GxFhIUzDyvrq6toa +sjY2Nr7xW7/lO7/rDYhcNK2b5ext27Y5WQwb9fqhjYP1pEJlFkMIVkZ32p0LHJSyUFk889b3LO5+ +30bPU8bKw0MJ7ZCCO6RrjD/mI3KnEbQNIqDjpzx8BaMith4l75q9+Xcmr//Cla/5Ms7bAMuEdTHj +4mGEAORezEod6mmoiVbH3Tvk8oJvxXniIjudTZJywlK59Vmdr0I0oooU2QApcbGtzTbttN64JdE9 +TytuVDapuDblgYqlR0dypC7BB6GcRddwzx1SSbbk7rxZmk4AxgtqyQP1uR1LNG3/b7EXyy5lXV7+ +iBJZSg8B0qAslIac5eYt+TGuwtgPbZf5xZ6vYXQyV/rQCqh1U7vPkNi1nsp+6M4hHFycV70eT69j +W/wowzntOakB1C5tfdOKLmys2pziyuo//tl/Pp8t/v1v/eZzJmtVVee2ZVaAVHJw1M91mODZzcsa +L8jT9TwwgFbkHw2IZhPbOHhgbWO9adrnv/C2N3zXG17zui/L7inLaV76GIRYRZtU9aSKcVopxhgZ +Akkbt+kuz4Lm7l5VNc6dfeIt76r0wJDoNyZTZQz1tj4qORhj2djeHH9RewMI4/fHfG1AwAxVfP/m +P/3V+gs/T8eP2yIrdp1mfWhS705YGPAVxcoU++z87mF1pqKMlJc6XSR41+FEBBAFuInuEGhTY2M8 +N9f5C/nBc/7QKX/0ieb8WZzd9FmrBMsAleqJVteq1YkfWtPzjk+ff6y66dpwZNVqMGelonHXq2c5 +CpaymK9lY+82uYuFBYbUuWdYCHYY+71mw78XTWUdX8J+BvCZjVi8oOr3rd2U9U47cA9VvPK/t3Sd +S6v9mR+7mINuG+xZf5Gv2JPZ2H20p6+di7gXerq4H2jfdrTnrw9ru3PlKIboOV977bU/8+Y3r0yn +b/mVtxyN1erKtGkay11OB4rcN0B4AAl5SZly0WGd7GQwmGAZIU5CtRpXDqyvrx0Q8dde+9e/7/u/ +/4UvfNFivnB2/r+S67OyOo0xxhgtIIbIQAssi2S837JjNYQQYth8zx3pjg/XICDbe3UaAZD2gpF6 +Kjd8GPte+4jlcd/HxubqAHAZCNryP/7Dnf/nSw/899+RA2KSW9HsHB4zUFR8OyMAGK2ooSjHy8M1 +tuUUaCohtNKpAUaphXdcPmin4X2n831n0sfvX9z/WD57lrML2GlzaokmmFugUqW4EkJlCsYAd33g +Y/nQ2uL4NXrhzStf8rzqucfDGqisBRRIQwbpClYEhTuWDPSbMfbhyBLxwejqnpmxhE1LS74spSX6 +toRuV+EcLszb4j3q2JOpcgWLMNBEF41la76UgtXTGksX82wgyU8y9tv/S0/oSXB5nHFTvjveQnuD +DhgjXQf2gCvEuLO980s//y9/6sd+PM9mh9YPeBbaJMlzRtFkgzIAuqHoTspRapuYEUOsLE6sjvW0 +4sTqSX3i+HO+7ute/7de/3WHr7lmNp8TyFRWBktQDyGEEK0kc7BUnvQDS9OOXfu7UOPe7/vZnV/8 +x4ewnYUKABD2FhUMdmjqfztmZxh539B/XqPPXAr7LuqG8+7/afv8rz30ljetftFLFrOmXIk0bN6A +WPqAcTBHB58/SSmXyjABhSyBwGCGgxJdWVQlC7a9zY8/3Hzg3uaek372lG+d1wyyFE1kkWBqjQJM +bWWakpVbEEKUYFnKredcT3H8qF7+vPjqF05felM9gVyC00qtnNG8BGNLnd0ubownbPnxopTtGVtu ++/na0nrB3qU0/vFqnQPPz9JwtLKkKsBoMJAK2JPhceV/eFjtn3Om9iRjiVU9JagNT+5JjrbfDt3v +bhh/xt1jjADe/Ud/8FM//N/92e23T2V1VVUxAFR2AK5corVFcjw7VFWGiaxCMBhpMdRBxhM33PDa +1772q776qz//ZV9QV5P5oikspUifodvnLZQMK9IMAkpGx/j0hisyWs4pTmt/8OS9X/s/th/9xQPm +5kBf+7nkXCsB0Ex6777nCJvGlfADFLL3waF/ByNjdulj488IYLR5uhXf+4PH3/wDs5aWHSWXDwCK +mGbJ1ynxAxJdm4+iDiB4tyo6IyWMJ0XxfDmgYLMGHznZ/Old8/vu89Pn8mJuvggJlCMuYne8ImlI +gkq1UKGiuVxAG1CVQlaXoEqpnrZrh8Irn2d/8+UrL7o+ToTGAXq0EjrqnKgd6LLTPOiez2BV73tk +z+RCexIBuM8Siu0fPD9PpiLRWhDMqzLLjQTNSoUiLjq/P7OxnwRdydGu7hjDyuAI2G8vPwmjHga7 +yskucs8y34ilrbY7yPCt8qtibMophrraPnf2l/7vX/jlN/+r++69Ly3mFVBXk8AqVDQh5CknaNsZ +iRyCxUnryqAbqsnk+PEb/tpr/vo3fcs3v/RlL2cdFm3b5jYwEHTs+jd3/y36Rz0lGCdMLd0BZa+n +03Nvf8/Db/ih6ekPByIK6FFs8LIVezOaxefc7NccXOzM4szDma3Z1kn2wDSuIR1brGPA0l5CtxRX +ZV8YX34LImtl9tz/7PBv/k+Tl96Wt+YCnV13mUHNpovwdre+vzoi9/0l0GUKBMlhJJizu+CBBt59 +zt93R/O+u+ePnE9Vim2yNnHS1nLBoQwHaAhkCgJREqgCkSIa+YEcCLaAgOiE57bKyqxcuVpcfxRf +/orJV758cv2B4A66Aq0rDB78J2VK9RivkZd3vzN+zwT7bI79RGx4sb/A/rPF187N2mJ1uMsMoFcO +Y+gaD3UNh7Wf1n7GY0kp6apcxtUdY+Qd3/exp3P47QANo+9j6BrRQRtGK7UsLvcyMwedxot6x3eP +B2yePfv7b/2dd/3+O+/4yAfPnj27s7nV7uxQDKpaJEJACJNQTVYPH7nm0PFrT9x44yte9SWv+bLX +fv6LvoCTkFpPSFIpid1NqR9U3ztQY8mdz0OU/KJiD+5OoZ5WD/6TXzz7Yz90QJultr4oBcS91pEB +0+Mnqhfd1qwINO0swvm0uOsh3zwlJPR6xdYLDQxVB0vVVOPXY+Wo8n4eAVwGAusd3VL/xN8/9Pe/ +My9cSU6kXHR/He5FSCDWdQhGmqTS1RWQk6mTSHCSQuxIUEYW3JiNd3w6/faHdu5+sG0TtxXnmVWO +lhlJoNAxwUnIAhVkKsophDwK2SjPMBOgrCobgDZkJlp2q71hXo3pxc+1r3/1yqturCqhlSJlNA1R +3a7M3gQATkgwjoCsTNFxNeQzYyRdar9/xqgMz223xY1SfiRV9alY7BwhIv5K8LXxiT2JO0B9x1Je +QsqpwzKpjzAUJqzS5Nxc7o4YrJTatzk9cd43N33z/OLUGV3YoSe4e0tNV6rDR8Lxayc3XR826uE8 +H/30gycffvCRx0+eOfXEYmemtt3Z2YwrK3WY1nW1ceTQTTfedOLEDddcd2yyvgZgsWgkWLEBxyyI +KAoncpUK+e4qytmPdvvhDnTfI0s5bWS6/7t+cutX/+mhKqndtTdthEEE6pXV+kW3+fWHq2NHGEPz +xM5qCBcePpU/9Wg89XirbfZcdqiE7+/kLulD/2KcMoKeyqELEcKgrvu1YeFrsy/6xmO//pPhhuNp +1srR5lzkf7MAl8BQV9UkhhhJFoW4QlbVWSoESDfR5e4ZFsLc7IP3t7/+vq2Hz/iW154Qsok0RQNa +ZnNCoZNygZwAPTJQyFTJEGqtXGzJ1wXoLRAyo6sRJgUGq8yYrr8mfeUXTb/qJdWRYAtHBYVyJ4yl +yj4DokJRsOry6PdMY+w1SMdwc3WJ0hKcjSfMM+x0isSetJduXrGQN6O6qPbeqXVFYwwHQ+zp2TCW +TmzIbBh+i33z46L0nn1n9NLZRKAsl/pbCBYr0tk0ft+nN++6I935vuaOD6aHzvPhbT+/5U2D7Mkd +rRBqTVfy4cN2y/PWX/O69dd+6fRFn4+j9fGbbjx+041f+FSXk90Xi4WkkkwrIapIFvUWNAiD6FY6 +vnR8rQeTEVcd36LhTatCOrs5P/ewIaHvkrMUuCyUykPAygpXV+tDhy7Md3TtWptDmC303GRe2em7 +EhT3QiFGJuqAbuOR+k8OHroSRRk+7I5I6Y4Pzd75wQPf9zUyeC5k1eVcSMoOV/CSiU2rTKRKma2x +dyKYVKYDHFSwHPjBB9rfeO+FB08roTZVwQlDAZdMsKu2d2OvdGlOWoYP59YSDVEVK9VL6oYFqQ1g +RshwBwwtERkePxd+4wPzszP/li+sj06tTTQBoWSnszeQRcBVmtAuz9ix/3cJXy6KfU9r7EfJYeMf +G2QX/eufvRH7+mVIsJK03ml7seSrs/SPJHpb9UpPa8k5dRUu4mqM/axk//vDaQ+/3Xf+JXVSxV9J +gcxWVhBgVUUIjz3afOrPL3zwnfl9/59/6AE89gQXqPJuaj5Ge0i6gPbx+9Mnb99621vPnrg+vvoL +Dn7DGw++5nXhxqOLWeM+r1ErAKBBbsUdXypVVeRJ9lrKpZHfUDKH8uE+HlhmHoZHvDTpx1AuATTL +bu0C6HL6BjfZQKyKLZmbZr61HXl0ERDXV219dX5+Gxem8bqjGYZwPDz2yIBQF/WsLf22uNKKPqV1 +YYejxKohZpx3PIGSJcdZaB7c+oP3rHzb64BKKbtcmU3OLlHIOedSki6r2eU2d+4DFKU+CXA6gJhj +G/mRh9p/98fnHn6szqFyN3dmy7VZSERXtgtBKYomA2g0MgUkoTyUsr0FmpdUNFjnTgXMmV1VW3gd +ooVWylRa1G+9s5236bu/ZPXo1NrkhEXvEhmCTCDYV98vOUUu4QseJsaVLMOLoiT2CtheRVPv8kcs +KVr9aZHsHyx3W86Wea4uFH6lYLR3eVwp+7sqQ6OkwSEzs/xq7KcYv7jEnChRAhQXCL3U1rgxIJo9 +/ujig+86/85/r9vfiQcuhAd9pS39mIOheFoKzesWswMRnJYyh9w2Jx+Y/cYDm2/7g/Nf8cLD3/xj +B//mV9iRjXlqgqesKohVVq4IKSjCMkaXwO6ZdvbxIFZRdvTxlZZLHH5cmrW719nNBETaAvBBrad8 +sk8lQyFcTWof25y8wKuqmqyutFBd1xfcY12F6zaMNzZQeuxk6Amajw4ymJnsQW3wqfU2bwBuyVgP +a4cnxw/owmxx6rGEM47z8u0JqgvvuDN/6tO67VZPnuTuSi4kZXhqBTrFwDaGyNqNNkJ8OEDB3BIV +I+491fzOH28+dFJCXJCZgLkXhgJLQMNUbrdDgZ3uZ6nQUjDIMxBID3BDZBTduwnGIJpDWS0ok1wG +NoF1zt5Gzuzdn2qnsXnjf7KyGmzhNPaeBaEQ8b4cchlKlpbbfjvxM+BrY1gc/srScv4cspZYtu7d +SSyVBVA4RykXYtfGBfusgb8kY8mbhn2PZGlyXIJUd8y3u4vIbqIjhIrzefOB95z/7X/TvP8/VI/t +1GdQPwqCmQAUkVn6SpW/BQjIKLlgEpAdBKbGVcd8a2fxWx8++65v2nn93zj0Pf9o9VWvVqjCfJEr +k1tKCKaMbOpEWLo0XY2uYgCybktbnuX7b8jYvhiumoJTZASQBfZef+wFIwJE1mwz7niYLWa5bRd5 +Nl80K1W9vspDJ2o5lNtT2/AL46qpchPGubvD/cGQgotQ4SUejujgCm85EI4ftek0339q8dFPK51u +cIGs/PGHmz+9s/68W5JyShlucuU2ZVd2OVxCCDFWbWVB0VWImwNEoXXmpmCPNXrHB3c+eXcKvjKb +SHSJJtYMgFo4DG4yqCMFYkfIOqEPldM2MwtoQ5fp7hCFSkgQ2BerqdvYKqfHMKdWU9yhfv9TzZGD +/s0vXqvgbQGWvi8m2CVkk8vBgeFpLs1qjfL+n+5Y4iVDF4XxH/ocGmQRna5KdzLyXLhxKQXWUChU +WMizyXK8KuOins79ROyitnMhQf2OWWqknV5Kl7KJyh6qkE49tPO232h/9+fsrvsPbCGcA55AAECF +vUUKqsAMChYRWmTAD4IN6hkEyGXAKjAh1s5q9ivvPH3XRw9923958Fv/az+6ofksmQcFJMjc2ect +9Any5J5tuZvQwpDIsuT0HG7COB1pz62DEKiqJgz0AW4wshmHSIJmbfPwuXygSmvTWZvayMMvuHn9 +2NHZaog3HyeoU2fSPRe8L0QezKnxC4wgry+nv4kb10yef03aWM+rqzpxLQ4cCAfWJ9ett596TPc8 +1Grh0OLP7p1+/Tw5PMuzp+TJpezuauWLtHAghBjMSm2FujwwmcylhfmE8c/u2Xn/x+bNVqU6eKSJ +0UnQK8jg5oqUxSB4zl2wyFmcEUIxgVjE0xMFse8SC4oODyKBLkJRpBRAEg7mClvGmkFtePsd2887 +XL/yRM2kRMUSyRVJOjs3yP5FOryzxN2uxALF3uWzf7187vlaOZfB1Fdng3b7cuG2wF82UMNo2xl7 +OvfPjIu6QoFyS4bEoV2BOInMsjhJD95z/t/9NP7w31aP7tiMsREaGMAN0IAEGUSgAgJ0ANaALXwF +vIAK8DXYBdDRVogJ3hRdINREtYr5vae2/sU/aB6585r/4ifrG5/bLnbASCHBrcem4lgo+bbeVcdp +fF3Y5z1cssEvxVVNtDrG6bQdTemxI2x4AULNjh47nQ9GHjtUrdYr09WV1Um7PrFovPm66StfvHjr +u4ulgD5ldwyRw8HZy2eV0SI6ydUp1g9gY03razp22A5v1MeuWXnJbfP33/XE++5iu7l46Anfmqua +5KzU5Hlqc5a7Q9a4N6mVazJdCVWclGpfoPdZCRmseXaGOz6RTp/MTHVbQQ43YyhVVAAZLFgVOI1q +ctp2EuqzyzJycKPoRlJtgKCuC4OQTQ5lKogxy4sQEqQgOkizymHBhHmUrD65pd/86M6Jw+HGqXku +009FGrY8hSVHykUnPEbbG3pBystf3WPyftFKz885UAymQ0c35MWhRhLsdNo/6yfxOaSBw8ZyKU9n +GRdd2wD6+lHvfCiUFa0HZFa1Pv2JrV/7X+K7fi2cm6FlbAUAh4FDwBQSvAKrzg/WNQM2WAIdaQNs +QYfWoAUCgAzbhFqEGdTChAkwXYQLv/WWx848cs3f+7n6eS+ZN7PAuhyrkIRSQ+10M7Jj3IVkLl/R +ksk5XgBjKoexb9Gimzm8JEWM9TnQYxCLZB1anTsbLxxWvb0iWt22j50GPNxwNDx6uvnY3fnhk4Pv +ZylNZNDtGFxsA4MzmM/ZijCLa+tNVVsd45FD4aYTXDSrL7lltohbf/rx+RPb2p5jo2bjyp5dyR2Z +Etus7J7AJrVVrmI2CqgkR3BLhkwxxzseaD760Z1mO3IiJtjErJQ0mZWtwt2ZZA66JVpWCslgLJ5H +UDSYIxdDqN9Pew+Q5ChrT+gE9AApwkmPpiCnZEwWZvX04yc3//DO7W9/2boMyVmVSJCKIsnTwJSx +j+wpv7Wfml0t6vfZGHHPTyretM4kJUt9dal5dvKq5dAuraiLUtlnZuw/k4t+bL+Z1n8d6myKPmYg +g3Koqubh+2a//s/w/l+xWWNzxCQEYAojWGyzAAOMUBgJnBMIoFDnLvfBBY+gYC3yBEiwbWABTkCB +KR9U3H73u06Hv3vND//reMttadFYsY/6im73HGgOGARTVzE0ymUpaHUp0noxKlcgyBGjT9cclpk5 +ArLh/5J4UQMOtDvn/aGTbI/EC9vtE1N//Oz07KbOnNn5o4/Mf+8D7blz7PPXhpZ6YxTzkfw3d0Mr +jbnYKgOMtU1XiXq2tVg9fq1HVNOq/pLn+vvv14WU5wtfS8rKmSHDSRdz8tzm5HkH88mkrlY8yiO7 +jhJytVQV4laLD330wumHG7MNBFYN5yuKooqnPzCF7MpqZTPGogEOMpNANidA0jqVdsEtm+UiBmpu +bl2bBCqbU5QjCDJ6YBsVCKOSIdMsyMBZtfZHn3ziVTfVzz86SSq6SejlgG1wOHwGawGXdsLs3wj3 +aJ88m0ANBdfKmRkAYxhukHV8slwIOWyWV2GMrb/PLdgv0fJLPaH9a1t98LjkRjoR5HITk1VBZ09t +/d7/YR/61clmw00wAxVqQjW6vZiQAQGdM5mAwNxjg3ddM+UwhyUogIQFyIEVICEkmEMZyGl9o9r6 +wHvP/uu/d81/9YvxyFE2Cw8mWmsM7iZk95CDKjJ3+oksjh3pUjvwMF85SlUfzHBBdLdJXT/3+AyV +pxx6ASIbXUF53XbXl/KpR3D28dYi4wE7tr64fw0hNp+8y7e2Yl8YP0jpDv+iR7elNwUIi6isRkxI +iyYwNjstVqq808YTh/LZc7Y6ZbWeE5qdtlmZt0nJQ07KGfOs7L5oWodyTjtVs7LmbfQQMZEJSMHl +jBYePLX48zuavKjrQMnyVFqAcKusUUpqWyoEujIWOdOMZV9xOWHwspsIoJjhpYLdOrFSGAQViUtK +5fcyeVGXCmiDDEqBCGBkg5Brnt5Zfc8D85uPTiopQbFI9peuC7rkNN4/+cd26B5FhlEAbYnLYy8C +PgtBDUDcPUUyyG0wQ3uu3P97Nf/q3iMvr67P4bh8vtbjfecA7rxsQVHA+a3td/xi/JNfCFszbNGS +8gSxbBcBCB0pk2DFn2lAWbcZEOidCDXZsRfGbk/p6mWKOmLdtZwjEGbt+mo89+7f27z1TYe+458v +qgjPQb0WNd1lpJtbsXzk6oQ/9iLaOIaAvaC/3+jwnKmw/tLnnTt4QOfn5VLQ1zOh11yzEdXK8tA2 +QMPFjt/3uLOcYJ9R0YPaAGGDQTr8iNHuSgA4K1/4bKHU5CZFKu3MbaVSRc4Xmrc4syOZGHy2UJsW +rWe659i23uSUUiaiexZ8MZ+nJqWJtbJKApQIylrDJ+9tH380M01FItNTDg2dFCVTIExlw4DkhGKw +Fr2Qi3dpBlmyAJSohNxLe9hyGcWHYQiBGUyAG2iSKUdjZEskkwXIkIFVRztZ+dAj23/jhfmWiTWw +0IEaJWDv5vQks33JCXNRvrYEYQPeje2bZyG0dT04uqHCl4txj8+ea20JxZ5tN+WiY79RBqCv/jQ5 +DSSygOYDvzd/1/8ezp6tZxZaeUDlsIA8ASewGpyAFVBB/f8IsAirwVg0dQBCAWZgBAI4gWrIgAhG +cALUYA1WiAITlNLGDOn3/uXm+3/BQmggCiYRJpmBLs85q3RoEuXDU+hiRRKGkMhSJew+GwQoZia9 +euGt9XXXtUCyriv7OGQ5NhvRRwN6K1KQgtQn1u4mpo0Z2dhtN/5Az+Bm2ec6lQKJlJvNrenqqhY5 +xqqZzfzx89qamctWK7qQXIAcbZtazy6l1hfzhWellGdtmi0ayeVyVyZyhhm3Gr/zz3f8AmrRiSSP +raFValNKyYhYxRAMVCAthGAml2WVzvMOd7hDNBi6Hj8mmgppxyDlDiJFoFKo4DVShbZy1so1vFKo +wCCHJ6ol26jTO/VHHprlYF1TLg6+td2n9pRTesne3D+Ghz78OAzsW8jPnmGDx4RF7LhHuIteJkZz +/UrGHmh4GndH+148c2Nsl+0isjoPWzHSTLG5+8PzP/rpyWOPmEytSwiFlxksjICsAisoQFVH2YTO +QSJ2EUES2YCI0tTYIrgCTaEpMAULwAV4BdSoMipxchLzX/tp3PPRuq6b4qcSyNBlIvaaCuw6z1AF +40pIrwDe6DKHJ6597xc6n3Oa3HyMh14mgF0zuWUvWNr1he3m2frotz4qiko9GvpecByet+/lawXa +2DZq2+iOWeOerLI8n01i9PNbi9Ob7kmHJ4lKbfLsqc1y5CbPduZNm11cNKnNbjSUJLOELLmExGD2 +6Pn2kx8/F87FsENvnC5bWJzTkrNU/0fk2hZVnsecAjwUd6tKm1iK1uWydc0JUATaIal7zoGmoEWE +V8iRuaJHzWvk2jzK6V4JFUIkAmjaMsxUbZEf/nR7tlUgdp9TQaIR6Dz5GC+9/Q99adXvX6HPQkQr +o9uWh8mNgm1dqHkPZg8z+ypC29hEv4zDct+LZ26MiTcG+sb+PwIBfv7R2Tt+HvfeHhfkliOjEhCQ +VoAe1DyiK3cxFDcM+x6UXU82dpXN7MQZwND/X8ECrAIrYAJNwEmRAYIlWKMAVHd+cuttP1XPd1h1 +HZPccodgkrt70fqSSJMTDpZIAss0ANDX1o2udO+Fl8xGss22fshe9vnZonzQdNwFI/U8SyOmVn7M +I/Dq7vBeDfGl0OdAAzU6CADhvPuM80XlTVBr587VvsDmBV3YYW7b+zcX3taH11rP89kit46clXJq +U0pZrrb12WyeU+4MRifkLZEgMzDw8cfb2ROmzLSj6TlWDd2yHCEzZCR5rq06XE2Or4Sjdb0WvWIT +XCX/gjQxKlSykEkxk8GJAnZFOgmSSaEE7CzF0EamSAayQq5pNRWZKrYRrDALApmIzRAf2LR7Ty1k +aNE9P3eC7NvBPPU6HdOuAbz2mHAjmrZERJ7No4S9Somui15qDEpyH0YQvrRpX/mFjY+zZNI/yZf2 +vbjSc0C/NT3lh/c8V3RtEVT6vdBBuufm/b/lH3prWAALxVlpFwIGGJGnYIUQwQCFDsuK2VfSOzj2 +rAke4AEgVEGx81QpQDVQwybgClhDU2gFMHgFCaFBnNHf/euzj7x9EtecLQgrOR69sOII3dSRNIiy +kovXZcqL6qM6+ze2sumV7kmB1dGve4WvHW/7XoJ+cfTpsAwj7GOHyZ3jLPSfGX9XWAa+oRK+F/Z4 +QnnbvAm55eZme+oUHjhVnzyPe+5r//je2f1ngLx663FbX3Mqp6zM3Cb3bAqelJPHMAkhWqCVSKjB +Mpnp9EQ9/ogWZ8zmVIKyqehLOULLDC/NfqpVrl9TbVxb83ht02C5pJRZzKVk8v0oyQAAIABJREFU +gYSRVjpslxVmzugI7gBTkIsM1tYMRq/kFdLU8ophldvrnKww12RUimbBJlQGW9gTKX7qdJtLz6HO +IU7vHhme1twGlsnXGOaw14n2rKVpw4g9LntpOckubODue+qfMQLpy8Ogpxi6VKbrk35ptH9fhRPg +01cW2SXkg+uBmYLF0N7zZzvv/eXJhXNhBluUzDEoIBg8ItfFjdU30jUE766kC2MVaubw4k3uGlUB +7Nxq3ZvWvU8HJkCGsWvzpxacIbjqhzT7D2+qP++V9ZETqW0MlYYeW8AgTd4/ApUgGmRdt1/tzvKx +x2DPtC6JVjR5XnnpC6qbX5Y/9lDo24WN/Pq7NumgPoQR+cojHjekdwyftNEnB/q2dFhDa4sZH97y +g5vamTOp/fT59tMPpcdm89tPZt8OG+uTW67djhZpKQf3MG+b1CaX0YOBpAUDDMYg5SI/aUI2SwmP +PLLtM7MFBPlEaop3Xy1SyMSCPm+ro2GW4ZStwSPEUlcqo9DJ8AKdvwKp8zHIoVy4WmYy5sLwYrDa +PGISiQkXlQLZAhUUnVOHnNtzDxnBsRBObuadpNW+Qs77phtDDdHTWBJ7x9J3n/1YNh6xW5wozb5K +jfslOdmAaJeyty9/jDnaZQPlVbNDl7jn5ZyA9trOZFfDV5R/ON9p/uR3wv3vDw1Do5x7NkGgAiqY +gRUy+4ahDs+whNKb1cdJ9ARy1wisSOCVmoTuddmHQyGNkHdhB83gBB0GxAbpQ3++8+5/tf6N/4gN ++nWKsE+Bvb8cgKL34UdRpqFnzXDHxtOiZPfKmJo0ueE59Ve9audjv1up09gYP7DB2T/g0SD7Ua44 +j34cGN8QKBg/lbGTDruHzdID+aF1nWpSmIjMi9xg1rRzRwKa6rbj+bq1lLCzyHPkmoHGZpEXnoMx +Aym1Mgu2ChNDoNODjF1PtvNnWzaQmzJCoif53JEdwa2ufOrKTFtYuwazLWqbzKXiWghyqSR/knCV +DEJFAJm53MLioXUiwISFyYLq2qoo1dwOIhmgHBGMLWHykCxlwNUGqeHpHZ2Z5fW1KHeUqoMyK/ks +zSx7ZkYE2MdmQGMRgAZQGOiSnbhUS3iFd218/KtyMZ/Zny4r9ik5Y/kC2cWwMBS5u0JVNQ/cPv/o +b043s83hPajlCNbwCVBDq/BVMAKlHCohAZb6HkPqZF5VCuAFdHrcUNHgDwCRqz52WPV4QaAFSsx0 +BgjKCI54Hou3/5udV3395MTLNG8iYjYfF34OLKzLXepguiON7AQilhOX0LM8SA4EUXIxHv2a1279 +i+fn2T1WWsl04LwnUcMukbVrI4zDCAHHY8zalj4jADib9AmfHxMqwBKSkAJaGBqvNm49wWuPUBFZ +TWpgi7ZNOWdP5tbCbGexEyaTlcmkz4OuEOBQhTBrtbklbirOmA7LG7EiKA+IM6p2gbWCHmaToaDm +CVeThZCoCgzZsjzAHaF0ObZCuoPa7sLpVICC1BIgYaK5Gy8E1YGEWistZmAmM0SiisiL1BBu4ew8 +nt7Jt6zHMmVYnArFAisz66pm1P9FGREU5AEMLDXuZT3t2mVLvpWn6RF7lo4lULucyyl7rlioTUf0 +3WEW0MxnH3mnPfoJZFjxfCSQcINqqAbXwMOwI2ANzaBz8C3AoRpqQQcFeA9qw+oPffUoS1JFn/AR +uzw4q8AAOPMM2FSX/dXAE+qMdNeD+b2/VH3TFyyCJ2TKCusamNpgjfaUrY9a9GYMRn7l8c2RBBai +CQ/Mng990csf+rJXpbfdHUf4tfv5UfRgzMLGjrMx8A2rcLBnx0cbeyJG9uwZxxkBxArghAutsMb4 +/HDbTWlt2pz1EMM0TJHZpFmbvLRXbdLCglamK7EKCLLSjav02hJzVk4sKWqdcLrEpujbyXMO89pW +Da7mMaboeZ4wzxRIczIKVQ6ZcHOKqWhIiKCiMQl0h7MkN8oQAIhFw7Kik10Ez4U1RxQRkE3rlW1W +TI1a2oWEU9sZlFMZCiouUpjv6rb0Hoi/QqN08GJg8RdDe+2y8RoYexDLl8fb/pVHEp7JMbZAx5d2 +mV8B+6xuiSHo7GPN3W8LOykW71iDlsgRMQI1tA6eQPi8dXvOAb9uzU7AjiKsgtUgNF0kiru4gQNI +XdoHBTPAkANQdyZtAcpwFOEY7FrYcdkN0jHoMLgBrkIT5GhxgfaDb09nTlZxIiT2DpclREPB91If +zD23Ynim4zd3Xwgy0iwsEtYPHPvb35CqI97TzSWR7qWAwMDUhk5UY0YxGOW+F/u419e29ALdwWfA +QmhhaD3Fzztmr7gFoWYVWjqlWFV9iFlgzmgmddw4sFpVsSSvGFA62oBS9jRPjEqH5LVkUnK4o4Uy +Pck2PV9YtNtt3WBli3HB4DbJNkmhkgHIckkxiVIJ2BTmb64gWZIlKbsBk8yQCwFGLR0YJMKFVe9D +1M4AxYpTBGabEXPy3FxNl29delZ1OST9ai7e4L9Iy/PKR0l1J1C268LHSHLc33vJD7XEcZao3Gdz +XOV4KPtxOWdOdG0LShlouQ00N2H22D3x0TtjAhI99WuMyBVsgupa+EuP+Rd/dXrJ1/qxl7arB7EK +L5ZjV/Wy6yzDEDHoiRsBEJyAU/gUXsFXgQ3oANI6dGid11wfb7zZTqzlw9Bhs3VwFZx6hOmuu+d3 +/jaDUSXIx/FV70V2iS4WDS+MNdDH6FYedLFDS3W9OS0yez78la+zV3/FAir1YN7j11KzgnEYQXvz +eAc253s/n0ewhb2uugy0o4AD9h4hY73+wi+oX3BLqKdYnYbVKkZrc6aZscitN5NJtXFwfboyrSqr +69I81Wt2esfBGJCVQMEqK7UearsrjDnEhXFbfmaxON3MLzSYKSRjiqENIVGgvDRxoWXWiSEDrawV +koekWmRyJXdXcJgryV1sndtC0YlJRHZAcAFJyExQYwCRSQg7C7VeKg26R0qyq4Tp1+VfXNPqMxsx +qEufKvWgnQdpX+hzCdH2e9wu05obDouRKXTZ46rFDZZO9SksUPVLppTxwdE1ysjFqtBDn+DZTQLM +isVIMbCQrMOobgZv/GI893Wsj3Ly3ubco/TzXfSg1x0sYFCozvBmqQ/VkO8WEGq0NbgGOxx14JDi +YU1uyNNjipHTRwNv5+RsW8NOl7CD1edn7Ufe5q98Y4irnhv0nsQeyrnrJuyJY8l0g5bhDD0gdq9B +EUF0KBOWc3Xw0JEf+LYH3vfuSXtSYIRKiWgCqr2gNjzCMacbxw2GN7FX20OjI9g+D531nagccENy +s+e8aP31r2nXDqaF4qSOKc2Z3D2GaNa4ewgWa6un1cratJ7EEMwMgTJaBUo2iWFlJcJaRMqojKph +W7k1pJHRtObK5EJKCxMUjYQHk5GliKBLeO91i0RCHlzZCKbggUDjCNREoGVXyEqBSAoRItcJFG3R +co8CQoajWMrKWU2S9xXc5blZaQjTL00XcHkL8y/NiCXJmtbDWUnpIzmS7tnP0cZ4tB8En3LwM2zd +cjVx7VJyiRf9MICSD9ElB3V3Ccagtkln71OelRQHGzAwQhHcQD5+va/eECcnNLkG6zdUWtUO2AAt +6PAEtj2oOVwocTOkLqnNe37CCEXYGrARcOg5tnFTiIcxOZYmRxTqcOhWm17D9U9Nz31szkQAc2dG +uu/udOaBeOLFSCTAXmgAkEq7XrDYXF1OSdm39t7k/ROgvF+aI5TiFM/5+N/66s1v+u7zb/nfDoYm +9+08x4LgYTjgXqQbk7WxsaldBYDdUMNwZmOChh7julxfoZkeWfmOr5p+8UvmjDLFKJDZXbQYq2pS +V6EJIaytrRw8uF7XoapiiIGGYCayK04PqieQqdt+DFgAQcigmbVsHbExWUnkdbYuOAJzNBQJo4Bs +sO4CikKOBLghOEzIQZaRWvfIymyakbLgqhu6BKCKoKEBWGRIklcLmyZrMibyNnV/sxB7DV6FImrZ +i7LJ/4rhWikdIcuG7V2Mel+Y8lIzG3t17C4H2oaDDwe87LPVaEpf0UPa41p6KmjrTxidY60wm+II +iYHznXz2ztgiZFNysStf99LyzBF8BxQ8YbEZSM+mOWwBnwEtYoJaIPdrm12NgauLLLIgXTEQI8Ia +7NAaD9ym6Uaur9XqMa4cZ71Bhrh+Qz50s87cGKu3paZx95CjHr8zP/wn1YkXFUJWVES7xzwi5n0b +oy6Wht45Mb5X4weHAVC6ViUm97AyveEf/p3tP//Q/M/eMQ2m7O0o7YN9hBQjpjb8O/5xSXS32VuH +0Dsk96SDjEtHZVh4sOe/dv0bviKtH1TjFpDdV1dWPOP85o4CrLIYbDKpNw6tra7V09UYggdjtMpK +0YHcCau4cTgyN5oqZCmrL90AJGTaXGilRBhoJsIDQVgFmFIUM8yMoVthqXzbEelmlk0BcjNmxhYI +CqLAkJnKJA9sE4LBSvspKCXmFmhsmlQTyMq51N4VH2m5D106m9Rbs3+VQA3drCtb+F6twfEo7+/X +FBq72PYfej+zG1uvS7nslzeush2Ky8C18W9LPkRnkJbfIrDZ5PZ5c6Clt70hlDoCpBZ49Fxcv9Ov +ubX1wJOf4GP3+BlwG6GBGvgCVkAtdUYoHAIQoAxPsNB3OgAQYCvRNl6Qw0q2g7ZynVZPcO061Yez +Qlw5ng/dGm54cVw74qf/bTv3KiM03pw+OQGMkpitmMjlcEV1svC18ldN7LQNtXc+DE95/Mg6ACIQ +BMgXzcZtt9744z98zxvutMVDdd8FZ7iD7NU+eoGS3XcwsiiXSNk4Oxd7/XEDy+seEJCJ5LY49srj +P/LG1efdtp1EWAwpO6wKYRqr1vKsiYYD1erK6nR9feXA2nQSggXWwSywN+WYoMp4/LpaB7Yyc5wH +SIjEHIRUQQu3LFVEcotCsFyZtVIknDTFVghUpFWGaHAYlTrIMlRg6pQTYoYS1ErG4DSJrtgapYZd +2qMZQvEpJm+zmJVCdgCd7N+eRdFHDQrnwGWYJX+pRizzWJIMRpOrmzcjCFuiaUsvLgVMw3pYenO/ +q+6zfZFXMnZR2LuqI4oAnSWcj3bzvG9uucNdJVfDAAnmYAM/BzwMhP/oi4XmWNx7e7grVRfgc2AO +Csq9px0d8ejcKGWJJ3jdS+lmUHCBHlJGzmESV6v6oKojOawbTGCsrg0rR3HDgsffjzOf0JxwpPmF +UqtFdM6WzlaBisROd1Gl3MTZtwDZ88Sx1ynZo6L1XrnuUqzVsW/68gv/8UdO/rM3HQpn6SwZbT2P +6DP7RsRtwC/1abfDhwcD0/Z+kntBbYjAljqlfOBlh//b75v8p6+excqye/RARCmlhUVOp1MjLYbp +ysp0Wq+srtSTKgQLQR2+d5dvAYJ0/Prp9JqYHne1Kk0644KE3Kgkq+HZmaCKnGQSOQBJ5gYySB6U +Jx4ZSUv0kCnS4ZKcJR+hv30uJquD2laF9Ckjyd1E2QIyYiLK5VlMzBkgpsR6jIauhcKerX/wL33W +V8mzbkR2k1tJCui6b/TVZQ4X+wZwF+M4FyE7Bcw6h/SSr7gc/KmaCTxj43I8g7soTMlZXGwASCOd +UmoXPm+YgVbIYAIFGNSABHeQz0FNm+/+AGfwLeACNAcXUEJwCHDBHFZU1fp8B2YogoAy0MISlOEO +LtxnO1YFN5NDoqGS4IHR6ggHpr52wo7cwMknlIUM84aQM8CzFWFWSewIOrqGFsaODhnMO8eMOlgf +U++leEInZeggabSszBxu/YnvzZubJ/+vnzpUbbJlCX6oh+uiPRn72RFG5At7+Rf6dwrsh72sLY8+ +33WuYp3Xbzrwg9999Du/vlldQYICTMqyYKwmmAIUqzrEEKer08mkjrVFM4s0CzQWTfNiwwWRidcf +rw/dgDNnXEFYIGwzkDmJc9iasAZWQE0rDVpMFSwFqPPGEskjMpG7nUVFDlkyFw0VYjIZUblniKXY +XqpYgeqkjWnkipRdEqIzJcaU6Yo5TKrFoWlVsyRIL924jq9duX3zF25EeVFUQen3UZzIhs5Wd8Dc +2YVxunjCCAW065npfuh+R9HlRpPkHRnm0J1zf5j18t1zV2tcPrx2axsiTXIyEO4yqLTNcKXEBmqA +BlwAgAeEOXIGakRHuoCYmB2hEbfBBDZQgBKYEdnfR+8KDNRTERXJXAEZSmALy872CXgKEaS3aRHT +BYYNaZJSorVGFxqZGcEKigjMkhdEQ2f9FTtTlBVG3ZkyBZP7TvVP5mcQJKcM9GROj0HmkEfCU6im +z/+ZH0xVePjnfuIIN6PK5e6Je+ZRJGF4c2xgDo62QZlyADIbUTmgSwPMqha44eD3fv+RH/z2dmNd +bTKj06hUENFSmLC2aADMMK2qUMcQyUgrprnB3ECUgA2CEX7kaLz2+urUx5NX2RqGs+ZJqmUbYgYW +UJELXZAkI+DgRIoGJ8zNYS0yEiQDPUghG9xZNNPMXZYQgiFjERQSLOXcsgUpmFNRJgTRHSATySy6 +V4E55Eg/sMJo8lRSpbUL/IbCzs3of9XiBgoKoIjcVQXKgSSUkioaXaTKXkKD0520hFL0bISK0nHn +UeiXAiiiFMGJfZhmf4B1nCc1fnEl46IItfTmRfF0/xf3vO+ACU6Zy2lQCZJZvWJxKocaMkkLwGGC +SnbDefgMjCVACjbgAi4odVVTKuGFkvXGLkG3hAhKpi5S8bwAc6ABFmB7zpoLaA/7YiuEsx4jQqA5 +fCcZgp+rzj+QZ+cFAAxdpRy9t7Acu1LIEOTeB0W78EjX6RyXvCEomaudwV1CDd0Lcweissd69YX/ +6w+lQwfu+8l/eAKPxd79b0Czl7J5j265p2+DFPgAW0NN6JDMwVEGHAgTdsKJtTd+16H/5jvzkSM+ +b0rxkAclC5ZFiFHBwqQO1lUVEJUZDUNPj9J3p/fCUMrw1Wm44cTk49MLXIgXLAdh7vQgisG8AFmj +XLu1RqMqmRFCDp3oqENw5wIEQ0CMdAtO5Ay19AiYLBHUJDETSpi2zFmAFOneteDpOr64LHkEK4Sa +6eAajh2KUVwUDZYh4MPOYz4QkitcVn+xRrwbZ8/5fFs7c2+3lVt6dFYM01CvYzJlvY5qlfUKqxVW +AQhgKFapM8KTFQ8NJZopdlO/NJTt9g+ol3Lvx1L84cn52pOsrouOsb18qb+132305KAmqXijuiSh +YmfLHKpWD9rageSIC+oJ8CwYgFX4ITABCbkBqx6/HCrxTXWMpbiEGEEhFKTrxbPLhqCetTFDC+Qd +2HzO5pTPDrmt0cxQdWJd3nizzQsPt4/enh6/vez4JGCx9IwDKJFGZ+8dILoMNgIc9ia4Fw2l3bu0 +fG97IGQnuaSODNIgMFijFGL10p/4O2svOXHnj/z/5X1psGXXVd73rb3PucObX4/qbrXUmm1Jlmwj +CQljC+OBGMxQJIQiVBnyJxBIUYRKVRIIERkrSVFUBRJIQQLFkDKzyyCMDWWwgSLYFrKsli15ktUa +Wj2pu9907z1n77XyY+993nnvNcYMNrK81eq69/Y99557zt5rr/Wtb33r31ef+fMlmJavq4rLlgpe +Q89xi8XSsYep9RXctEf+SKawMcTV2w/9i+9e+Y5v1tUltOroQ9pEnQk8YCJWkalYUpMhlCzQtcsn +Lb8LVEaN49rfcsv4jxfX2vWoC3SX6KCqEZtOJ+ABsUOAUoKljqDptDiE94ikZkKipZAfAAzmEg4A +QE2ogXQmKogahFUgWxMxo7VGSY1bJPnIrIK6aCao1eagqzUPjCSm70iMlB48SWHiloh8idm1f7nx +c8/q5hqnU5mti22RAI+yXorDZR0NMBxy/gAWb7BD18i+o27hkJtbsPGYNYU+pppp5A0fBiVBUctd +SQ1CarcBXsm4/KVjr0v12Q/sW6grWsy9JqwLSPuv701xoGybSAIbkRrMLazI6kpoYZtwzxd7tQVs +wJbAOUgF88kPgsq2RwYDZ/DM9Z4GBAEluycuAol3Q2gLeqACZpBN6KUg1Sm6Becqg6KZYvO5FtAQ +uHHBvfDk7Ln325mGDWwAc5CqNgpywsAsaT109dHpZ6LgCEj7PLqiwr1+7pUuI7ehVFokvAmjArzx +H37Dgbvv/NgP/ffTv/K/58LlMdMltApAwcW68LMflnZsD80J4cK5BQg0IMSiosVw8NXfcugH3jZ3 +/71RamtbUIygI0EHDxorA0QMgq6vahcUm0hS9iHEBDSDUDQjU0bEm24YHjouT54LdVvJDOW8IlTt +jBOKHmRWj4BKI4xIzp8LKspIGlSpTL35zCzCmRhywTEG0Jj48ULEmIC4SsRTE9/ELMmEaEEpDFDX +1hoOzHGlTpgPSyp7O7AvO/cXFOF5MQz/oP8DCOFSybUADsSpNCXgoRUwBEbLtngirKyG1RPtwZfJ +sVfw0HG/vIhKjN7oIwU0J1OqGJzS5TWDXMpRvm9vmvUvPcW+LftLDzTre2E7XLY+ZaF/Gn2Rkl1r +OP29/WaFCQWmaioiojSzwVBWbpHwYJxGlIhJAUzBFtgA5oEaqEGBCkQLkNShkhHSVU0RlNzVpUvy +sQWT3O4EcQiswcm66EdtsmHjfZSRgoBYu+m2XogXPtqeDX4Tpohq5iGjFQgTRY75O9IX7+SmCZIE +GzvAes/YZdT2ZI2ycXNKZc4ImMblE9fc/Uv/9fE33PXEj/zo5KmHFmHiGCJSw4Y+UubLp3R1o+lp +6AFwKUOhUSeKMD588Hv/2eHv/na55mhsm2ABjmnbcHAgBFahT4FwLis9ZngkgYxGBLNyZ/IOp1QH +CSFetVLd+ur5T31krRrUYQSbJDAyWX7a8zQPrkIco0FbI4xNyisxRY6IjD6TeBKXDarOaDUkiaZB +IUKhMzI1NCUUrF1ns9AKSKvUpmCl6qNVwLX7Zb5CaHseLgGUjTNvW196cSiGG4CBmvX22QUBBBxc +QnrcJTv7sB/CxtDFa3Xl5fHq+6bX31Nfdx2XxkGieRPUrTkm5MEUYATEKstwjfSiv72e0a4Hn/vY +tcDIjHuhOJF96cpdnKxd6d3+P+EKiYW8AVpyRs0MEChZueWjQWtda9ADvwkgwjaBKTAC5hAdxGd9 +jny+ZflmBV3LopISER0kQgGkqDcAM5gAE1BgitiuhcFJdSMvQ0MNNeoLFkJzGX4KUyBS2sh61S/d +lIOtHVcu/9Ae0MmSCOonJ688+tvM9r1AwR8JUQCwlDNWFeOt3/mtB159xwf+zY+de/Dti3F9LJiC +VEu2rIPePOB6XFykUJck6QkwItgkWvTj6o7XXvXdbzv47W9FNQxNhIm3DOi6tL/QSsZeijE3MCu3 +p9DZLM+YihZgyizTSVK8ICKqDYe8+56FP/2DtYvTpm4HeJLl6ljq1CNnabWjR+5TqdSgAgHEqFYp +RKrAkNCFipTkPpoPtKTGRnGVJqoVQR/QQMXEYFAzUIVeqbBg5k2HinHAwpJde6C27t5msCHfuV1p +5S+p4fBvD0CKg88I6zpppJriGVKqj4HWEpuUySVZ+4Q//wTOXo5bXgdDNxwKqak9fGqlXCLPrPyf +EkwdjHPlgvldZiWNK/oFOw1ZTxuUnXdIWEpx5kRuefMOh44pcwtLeVu7kgrbtpljt7VSUNYGoohv +Lj7b/NG73cenKOuTJWeX7UTC+yewKWQKbgETsAV87hnapbBSz7201q1rTAWg4G5WKq4YgIay2erW +NGxuYmvTratt0CaQBggQShQLB68e3PedsnwU0fLpbF9hy0VUgIhkAkjOBn6uKMGOa2VAUSYFYRSa +QUEKiBjiwpFDx/7efTx+w9q5rY1nTou1c56AhKQWVgTpjaJCJU3EnCkwM2vMZmYTdXH5UH3va/Z/ +3/ed+I8/MPfauwmRlin2FPPJ4RWSQgiEIlIsoxQgvfzskuHPuQMpbmx2C5GkMYiIldX68qY+8YlN +v+W5QR9cqnkjQAgiEUxqWgWSdLk6wAwSmVJjBlBSSj1b1iTJltM3QohEmlNSJNJSetMZfSSDIVpQ +WDRnVresyQG27rq2et1N48qMJsLcJr44aV16qD+LX8qjbz08MvuZQCg4UGoPVOCOJNVqwdCCApsR +tWHz2fryb+oLH2pOf2u447XuZSdsATShQK3SJGRnIoxgFKshogA1W509VLjuwRVN2N7bsiMgQmYW +p38RoWrGT2KSySYTFt59dmpYmyYAdEdv8+IlZDOXeayZdpHUSBNEJcbETKU7dI2uLiguSqbQbkvC +dqgTAwTQpsfSSuXxNaAQDwrUgwEgLMJqMEG/KZ5zUEXcAoeIiZ7eAt5Sp6scWkaTYGLADKbQ2iiI +wxr1nFNrxaDMHUgFolAYZLvHR1piFBiUyh6B53OeWPkalhjPooGpgsFIioQQxsv77vyut137ta9/ +6ld/5+RP/+Szjz+6mJU3UXXVnTCzLlfgPBZH1+yvrzpcHb1q4eZXjb/y1auvusMfPBBhcdYSVKHR +vAnEUubDkhBjgg1JSbaWZddiobikAK1LhZSETdooU/wmAlMdC990/+pjH936xJlmeLCOp1Va5tYQ +UIK2AZ2Yo9hQ1JmlPGlQkGydwGKdN3xHAIytqSScFo4iDUINqVMXVqvgUnPVxGk2oyMTVkSIM3Ou +GQ152zWDOQcGJH6KmebyhbQq1AwmgpTxfmmPXUi6z1CLld4heSpvw0RphoICRJiAjWEGa2iTTZk+ +Xq//pF58Oq59o9xxi+4fGIRmEK9UZ87oW6hII+ZECHiyK37uCkszhsXtpgG7TtdK+Kfspe/SEs25 +iXI3CY00JGU/GJiAhsyuNwVgkmtgU1gJSlZ2TPO9CzKyATNTS44E2DWBSMuEUJqa23ccK4sBGICd +yBB7dm0Xtz49hgEXQYHOQedBV4j5AgAyBTzUJyYVEBP8BWvgAERYC5MsHOI7HrQAEalgMK12t3SI +431aME5jSbOyZA9S4yXQLAHn6ef+deZWhqfzqTD1xNTkdZrBTERijBYluwIoAAAgAElEQVR1+eqr +l//5Pznylvs//vvve/6hD9mp0835C5NLlyuDjQbV8tJgYWF0YF99cGXx6LWjqw7VN107d+Qqv7Rc +Lc4DokBoGlAdK4CafDXkuIBAQuBRLn5pIpnvxy4MJF+YFFmDVQ7ilRAYKapkaPTGY9XXvGX51Mee +1xcc5hwugTkK0QjApD6DOFIeVIqgpjnAp7NREYE6AEKxaCYwGoIGS+ieCKVqqUNCnDO2hFOtVCPp +jIQGwcAwI2BRPGrVm4/4mw8n80lBVFKS3KkBIjRNFBazz11X4ot47IoCPcyBub1B8S06qKX7U8QZ +GAGXKFBmAdYImzN++iA30TZv5l232vJIXUUzcUztQczETE3USq9rQLIFKZraAKx8pVnOxwEo6E86 +Kr2YPlRT1jUjsGoQSY3qjCScMKssd7WFIASAaEAuY8nREpKHYQBFsiuWPQYrcTPKFo6yarrkIU3V +j5fl2pcHf7IK2pGwelmp7cvaJ5ciLfYIrsEAG2bWgxi0hbh8iHpYAByokNQrPvH3PeBzCxhYt3qB +CCOSLkUz0OrQdfV4f7Q280zIBH5pKrxK9fmSYfScBs3Vhn+NxVBgN+QYr2SQiRRqASJiZAyBlAO3 +3HzglptnzXegacLG+vTSJaqO5hbc4hJq71xF7xONNg0DYlSLLYWU1IGAVLpMLylbSnbEytRKrliB +RNPD5JF2Z4wMvJZyj+TCJo/cQDiTqE37xnuXPvXmjd99dsNjoJedM2dQhSU4b9aqtIYALKstCwdO +B8wQajS2Asec8W1NFOaTjpPBKcjQtLpBDpyNXFI5UrPaTChRtIoiQBiE2lxVxcVB/LJr5lcGREwb +viAFuMgeaOoQC5oq94ArL8HRj/M6f61DhHglFmSnyFBK8UhYC1aAVwMsPi/N2we61bSKV99mh4cw +H1GZCV1LQKNXFRERZw4m4mFJCbbMfCOZlGKz65b3fgBl7zdLSfFUfE4ikYKZpp/BYJV3AKzVsBku +nj1/9vTzZy6ctxApHIyGi8tLh48enZufr4Y1nTMip/1j0nmB0FJwms1hNmPJX1WWAoq0I6YIFiaq +bVUP5aa71P+6hdih3dZP4ZVXuqoWlquZ378GTMERsuQkEDNJDtLCHMwnZgmoUMl5hkwDS7YPQO4R +BzjYiOpCWFqoj7wGtVgbDJHmCTXm+CwbfDE1OCVdXuhqKoVM/VeeXglPZEcVwbZ3WOYfSTpnZhoj +yEFdo64H8/Nzh6/qPgTF1VLVIuKpSghFXO5Bk2dLtqPK5KXk6i+qGcuehKxnwW4rS9no7exH1ldl +muVCijEidZA2ZaxiNdE45/Bt33Lo009ufuydTX2wdmfMwc0QkV1nNThsAVvGTcgquUh1YsNU1ata +AyHvpNLSasALaouR5uhaqKhSgagtHEU8o5lFtEkoRMyc0tNZe/1Ruf2IVKnXUodBS5HJSr8Vagop +iduX/OgnA31PjTltJbtEYvq+W8cDd2CARZDgNMWCm3jmD736FuQ9N2N1bEaKIMAoYGPqo4mqqUMl +JiDMKyhW0GzLp0Zat9MyI74pYkUybezZCkM6tKKDw+Ty1rNPPvXEY48/8+mnnvjo42fPnlu7eNli +ENA7V41HR68+duLGG66++cSxq48dPHy4qqrx4vxwPHbexxDbEMSJiHR6F2QmcZcqChSjVnLnTAIx +GNz0qrVD48FT632txO5SsncRufPFfEsANtAARBDAApga62mGcCiwCqGCJGcqqaW1QCri8cgkBQcA +HCBWjGJy6Oq5a+6KBmjKtHUlociVcbkLeUkQlptQvNK/+twqdy19EHpIQjf5Orcp7VsZjgDNNL2o +KWWimfOo1JLlIYtbXb6L4lnmRQYzhDAz2U4hlU+ykmXK9eZmmnvQJFk65l2DBA2aKOgJ8FQx52TS +6pGD/p9+z4kfvXDq6XepE6oFb6JoDF7gAlSSj39Z1SCbjgdVnZkKjGwNQiM06QtMTOtI71wUUzOT +OjB1KA1qQdRFUVKjilmUKI5D5+o6HhjbPdfPHRyKqapDldrsaI6xU46JVHTB95eMUUvDzDww2ANz +syeR4HbqMHcHC6hAhMXcFU552p39Pfy5NeLC3dfrSrRQiwhEIGLWGh0sqqppVVXOMcC8JigkaWZw +G/zP849m1sFw/dQkkv6IgaD3Mrm09diHHvnTP/mTJx597Oy585P1dZu1uUopxNDEYLZx7oVznz71 +4Q9+cH516eojR48dOzYajQ8eO7JwaP+Jm64/ft2J8Xg8mU6jNs4LwWTh6Aowwy6DQNtWuzCjmNnw +xCvc647HX3hsZhiUa9cZL+kFp1auJnbaOCTcaAME0EIXywEOSFtualhVga7kJqSos8XCPrRM8SUN +Q+HR2235GBJgpk5dFBNRWO43ZRApucHtOtnPx4TbDWmZWa7ZMKFoTjlkaNOlNs0u/WyIZv/LyXb5 +XWpwW3CK3tToCvlc5hsX0m2hdIHJuUs3xrBtdq1LEJdEqZlVRlE2TmlK57eacNt11Xd9/+EfWz99 +4X3mLjmJBjiBK2zrAuKtwdYMUblMQwTNRmIj0hHRoi8iQl7oo5lQVSNdw8hSRGeQqA5iMBfIgTiw +tnjrNXLrUXE0RSqPS3uwaMfAA2AUMS3qLX+79/TFM3Zm/LathOMDNwGugNodSyHukZDp2z4U/y6C +CrqMRcNtSPuMbC7Fap8uV6hiMLHcukJVA7S1GIOqKcWJS4hOBrFS7KllXWVgLX1ZhvmTf5T4D0Kl +EyetPfHQow++4x2//9vveuzhD1947gyagDYyaJzOLMwYUzNsWAjt2ixMmsnW5NKZc09/5jOf+dRn +PnrysYc+8MFHHnr4qSc/LYarjh2tq3o6nalqjBpjyDmV7IOwNKDr4EESpmrVeH796c+07/rTeuc1 +Qq94G70r2F3TXT5dHhHWwCbABJhApllElw2kzQdLzOK6roUBEsEkiJh6wo/RHl8cvvaH3NWviCEm +PyhHY+UymlBEUrrAlUzBXjP0eRnJE05XlOWsUkjZw8USn6YDBFAmrnVk7z1Z9d4XdE+NkuknyfAl +jhoNgEj+TJjlJ1ZmZHd8FFSabaMzaYDrjwz2HefJZzc3z4ANpLCJioJBh+uBE2BTESkwU6MS0wLt +OzqyS/6YlnIdUKKoQWKJsA2t03Zg1aC54ar4lrvnblh2hlS5SLEkm5cQpc6rtXK1XrJGDfnW9+9V +/s0OD9xWqvT6i9F6Pkd/A+8iUxTzJ0AFxsRKINyE7Sm3NdDx0bg6IE2jKmKMUVVjDDEGjTFEA5zP +SvtEIitgO3ToLbDtlWbIGXwDFN67ZnP23t/63Z/7mf/zyY99fN/8fLM13Vrf0HbWbG3Oms12utlM +Js3WJGxttZNZmMya6dSiyizEaRMmYdZMZhubzfrW+eeef+Kxxx95+MPnz549cuzo/gMH2jZojKoa +QogxWpdrSVFwLrKBJQ0IAAK/urL23p/25/I16mteS+/y9YfuhDPRt26aixAYgQDOMnnNAlBBDGjA +JjvTuQjRcv89jhBWwNvfMH/f98LPU6NJLhwkCuDFzNcSSQDNdrjyhVgJhZ3DxJxJUWnygsG0cfRD +YYpsp3nKSbK37XX2rjzdUdmy4+8MoWYTmuNbQ/bg+hfBLAPw6bI5kqjMGTUob7xmfPia+uS59UtP +WBVdRBQ4Kbe6BDgGABEMxFTcmugMNjAYnXMcUGHihAJGTaITmcgHiMKFBBoooeLhBuHIsn7DvXN3 +XVPRUutf88oomRdXNlsKUhTxlzbF/aIfxV+zjoqY7rt76wNvqFCdy0Yq7Wkdfy10an0A0K2L7XC1 +8+9cAYFIietszursYFxYwoIPsCitoUFoTGNEMA0aNEaBF3FwKR9JAaTYXiSnYqeHCYBGmMBQiw+X +J+/85V//xZ//xbPPPjtyIiGeO3N6srXWzrbadivGWQytNU1sm9aaNrRtbFWiMTgXaYoY2CosIkY2 +ak3cuHjp5Ece/dhHTh45dOjaG04oEGMEU3e0tA4T35NZ8qK4HClWGhw4snn26en7PjzYdel7f/fC ++N2v9IWydvnJGUFvYCNgArkMmyEmJyfADBJBRRTAw0awebTHhtX9P1xfd3cIUdJyzTp7SYjEKCn7 +QskO07Ybf0XC4N/uIAsEV7zH/hMWb4s9HwQ9g1s8vN6e13u9//RK6F4KSdlZ9uzK0brvReaCWKJK +ACmZbEnDyMGMaNVuPD48cJ0/eWpt4xNIfl/INb5kIWYznb8KIzWaTCGe6gwUuszNdSoItAiamlIJ +T2GEIUgDpYrXyunKSvOWrxi9/uWjOeTe1B1zkeW6GekEdoWL8VIdO9zS7ka7//bAv1uEPIWLl0Eg +lD+xB6ul0VVl7DJq5Q/dtg9Om0or1iw1i6M4pgZttVXEEGMTZ7GZzqbNbKaqrvKucs4IQ/IorERK +Vtz57TuT+VVWe791afOdv/Yb7/zNd66/8MLIsZlsnT9/em3jUmg2Q5hFiy5pGEQDYI7mjUKprXKk +E1AVIUa1NiIGhGgxUE0bPfv8cw899EERufXW2/ygjjGkrTvGiMIRy8YtrcAchBicq48dPf97Pzs8 +n+r+sw4PemFmN8f25g32wlq7jKAhq1FCgRa2BRgUcARrtIRVsDHaRWIfwt1/f/E132v1oIWRLsGR +1l1MKeY4hX1lBXRe6d9opn0OI80UsnOGOo+rmNbsWCbbm00Od5ap4C+AV/q/ov90h8lmxto6C4ns +JXYPQFIk56mkJEOStXMklDHaDcdG198xOLl+/vyZ4KySAKQ5B03mRXM6GMgFI8QEbMzVggqoNV0F +0JQqDVI/sxYGoBUEF4dUq+LKgfabXrv0NXeOFlxirKlL6Gjq0ZzjVwhTJyyUq/H5vpN/52MHEJEG +CffDD/zIMpZO49zHccmQApsAtACKEoz2NLLygT2LVpU/Dt3mZhZcvMiJD/VCs1Cbk6AhxllomzZs +NFvNbDZrmja2zrnKD8TRCbUwnNJmRysTN4dOEJDGuvLTtck7f/XX3/M777p0/oK20+nW+tbG2tZ0 +XdvGLEhUxxTkInX/MYBOXCXeUo0NDGoRxgidAWoWLKq2wdogLTYvr5986MObW5u33/GK+YWFaWil +cINz6JRqFfqa8kJRkwNHA7j2nj+Yo2iGoncHoXYl16xv13alTbHzgXa1zQY2oIGLgAI1ZABdpK1Y +c/Py/Ft+1B19GWYR9Ey9CwpyJE7KF5OJT28U4bbV+/yPZCGyxcmgfv4P23FoZvugm7gZxbqCR9bf +sXc96P+o7pViJ61EnIbtV9A5sOUoiJA5g8uSZFQHqtqxw4O77lt5cvPy0w9voPU1K2OEaca5QMnC +oJq6ZptHHKtTck7UAwZrQMCpANJWQUWdEDW8M+/aMBdPnMC3vG7+q+8YzRExk50hmaCGDqOUkoLr +fsuXgmHrGTUWzx/uWx74R5exdQbPn8alNWwRTQk/rde6bPtDen6GbLcg70ybJea+EphQG8TVZm7U +ztcRTQxNbNrprG21DW0T2tgGUx0NhoOqJoFMwQGSI1JU2/J+BhMVJzLdmD74q+94x6/9+uVzF2Zb +G5PN9Xa6FWZTUyXoAe/EiUu7uyGaRpAqQqbGckiLSAziIiQYAxhhINSgqrG2um3jIx/+8IUL5+98 +1avmlpdiG3N7AJfUnYWJGZpIrIkZguDohjfcdOHR98ePPzsURzPpGSn0dHjQS8TgSrwQ26M+1t2G +FIsnwoeMEeeBgDhEs59csHh8cfCm/zL/im+MapRUS0QSSmWSuwfMTIQinbp+mRRf2LHtOnH7vxRV +dbOs73mx93T3h+x5+ll+Tt/k7UXidn1F39cDkERps12mkVTlyqLc95VL/mWzT585u7ZmUrlqJlE0 +utapGDQzbCguyb81UJjfpE0VGyrBTCOgMqNAXeVkTPOzKM3cYrjnDv9tb166+8ZhTVWKUn0SKQFg +CWSU7Ovu/N0veaPWgQz5BiXfzahGd/0Dr34ap0/i7Cex3mC9qLIWCm7G2tArDUqAWiK8V0ANDIAh +MAYSB8HnSJauNfPBLW0tDGKlbZhNp00bLMbJbBJjjCGE0AIYjsaePu+DhZTbTetsjCO8iLbxHW// +td/45V/duHS5nW5NJ+txNtHYknQC51Lii2Qi1cE0aIA5gQhoUUChBLUI+pzjTyXTqYW3MsLgHAdz +lUU7efKxy5cu3/u6r6iHtULpXHRS1DKTXQBS8ZIz0EXVen5Jjh88/+DvDjdbZdaI7MehaT/pQkvs +cdB2PdCdr6Srv62xNYBW0AWEfZBlaQ96vuH7lu//nugriwmAiTCf/KJ8bQoSIwDFrIPavmTG3h/b +M/eZ7ntFA5c3WWYiiCOTMxaijSv/Zbeuvvy+sR6YPju5fGkrYgNenSxDWxXNmpMEA4Ol8tdUhaeq +lUVn0Sk9uOBQN5t+IqN4243VW9+4+A2vW7r+gKRo1gOV0aOQ0oFUOy/S2d8vKE76dzv64WfysLXs +4u7MA8c/hEtP4IUNXAJmwLQHru3y1LSoNLuS8auBETACFoBlYAHm8uEWAGuoU7WlZjgf5urI6WTW +NE1oZyG0zWw2bWahbWPUhfG4Hg68YxLld9tyzADpQEaS4r17z288+Paf/6UL589NNten62uxnZLm +qOIgLlc3JxQswiKDJYDDSQ67LPWigSRFmOTyOA914qkIhKZuQVAzKqN7/BOPzy0s3HXfPaFcs1St +krQhEs8NSZZHxWiMcXjNjRN7YfO9fzIufaZ2hZzs2bLusex8hTsNX3c4+o7bHGwRcQ5Yha4irpjc +/x0LX/ODcW6JIZhzVBDOGHNvSxiAor1eIK4UBb6kF8BnHzvDz23s2fbEvChuo5Iq5iyDcRDXKkOM +Vx+cu+++/be+crx8s8VRcxmbG/PTODYOnCzAVoB5kwViAXrAsA+2ZFgSDmkDw9CmS5PZYDJasVtu +lW948/I3fc3S3TcP5iqGpDpJ1jClmrjE3MzRMY2SGyCbbZ8/rmTBv3jHToQBtk0WhBlgOaufGnm4 +cw8cu4zNFmvABjADuhaYtpPkkYKkjg7SOWtzwAKwBCwBY9gQQliAxSSAsQVZaAeLm6OqiRZiiDBt +4qxt26Zt2rZtKyfz47nRaOi9d8xUTFeyZUmE1Iz1wP/5H33wp37iJ888e7qZbE431iw2XiiVOU+X +cTMmtlokI1PrO1ElQVMzidSYOOYUwjN5cc68UAwqRjhnNDOGNsRWEcVaPPHkp+6698uvuuaq0AQR +0ZKkE4Ioyl40IxxpiKRffOU9F5/5s+aRzwxLswDrIZSdy7aLR7MD1Cnv7Iex6MWnBmAFtgKswJbQ +rMLf/7bFr//Pbvmwti2kYsHhEqYMGiE5tEfa2E22iawvnQXwVx39PMNeT61/ZTJ1GchZecIMKpTU +DVkktFaBR68av/rOxXveuHTn6+dvuqNavdH84clsMazXG03dwLVYDLEOoQqta9RPZXVWXxVWjsVX +vHJ4372jN71p8RvfuHzvTaPVsTQaxeApQnOd+lD2yDL9OE+KTh6iF7n/nVzPv/nYC5Jie9fJSe1c +OSaZjYMsGpWQU/PARQKWMbVmp7PWj5/izvWVQqJUrjA3xuJxLDnUM4ZP2gB0wDnoOtAaN56pLlzL +1UETF6Zu0EjbxhjaGIMEHVi1tjk5d/Hi0sL8yNdWk6DCIujN0sqMqoNB9dxnnvn5n/m5Z049rW2j +zdR7OIhAHNUZaUKLRsaKGmkGUzOFTWBOVRQO1hImjEKBVoAjPB2cGE2IVqyNGhQaQMA5RlML8Lz0 +zOl3/sLbX37nf2DloeqNkUwFiAoQKurUSa7uptMYq/nl4//pZz9y6o32h59cLDS/0LuaLG5XF95b +70/3ihQsoAtFBeAAmEGXwYOwBcZFaw4Iv+ofL3/dA7Z8uG1nQm9Ayn8CJhBoByYR1FwfDSDrGX/h +puyLcOyyaP3HfXL4dogKZmcuZyBBwtQcQSdR1RqIuKtWRletjO575WrT6vpWeP6F5szZ6fPPhbNn +Z7OZEQyUVtvFRX/ttYuHlv3+1WrfajUeO3HJ77dWzaV4BWq54IWSCpNLCiPjNiy1ZT2j9sW7Xf1F +m0qHcxZ/LVf9M+d0SkEg6YGtDF8Be1J2KLxR7MzsdSNjbUMMVjEeYhRptcnjUGUDTIAAm56Wy+u4 +tKm1j65tTAKdpopla2O7Ptm6vLa2uTVdHMWmkhpJbcKSOoGZORGo/s5v/NajH3lEYNPpltfoK1Al +e+ARJmqgmilylZVaKidWSFBVgrTKjOaso2koIE68+BiNFdSJb0MUxjZBkEZYDOqc/5M/eP/JDzx8 +22teub42QeUlSQQClgTnqTRJE48U5xhDmDt67a0/9+Dj3/+25h3/b/8IGgSNul7Bre9d373hZ2f7 ++sYuFwUE2H6EawXzGscWj88N3/KvFu7/Lh2txDh1rHTb87Osppgto3WPukmTHeMv+bEHSttNIunJ +xOckQAr7kvsAAqRQTVLS1mIW8pSqcvuW3L6lwa0nFtLhqfbQpUqCBP0CCotZ2CGJs4p3cNbjjib4 +LDNOchaonNVucdYXlVHrswg/+7n1T35PDUlXFqxmNKVSmTvVZFtXyN1weGB/CTxjWUEdVM3il6GX +K0iPHVD1/LW5/RjXGFU2GNPX5i5LVJvAZlBFtJXpaH6j9g2kSXlKM0M0S8VKlbil+fm5ubm68i55 +kpnuAZgNhtXHHnnsf/3E/7x49hxj204mIkYxMIgXTxAK0GiqqqqmBjVVUwvqDdFIMnpA4FRBdaQX +eO/ovK/qaihS0YmBrLxqcv6gJhB4c4gSJTrn7nnta+Bd1FT34jJvCJQSYRLpxNLN0+HKgcWv/tq1 +wdrFT52s6+ArDzWLiEgshryZ9OVT0PPg0LsZ6U/Yj7gCPSJ2hLao7aroq64b/oMfX/mK77DBAmIU +OE2UGMvRJiwTm1DODZ3rZlnU4kW1Bl48o1tgfRg+PRARlBA+Pe4OKQYI286TmUazSKjFBARZhmlN +SWXUZMwy6uJMHOiy/BEolkEP5nvKQlreS9+7Irvl72rsOpnPJUDue2p73tzFnonqkHxXdkYN6Hp6 +ZruWT6MwPNgrJOg/deUxiwx9Sh1UxHAJgwEq0jmTecoMWMMWMUWICLa6NV66NKq2KFNjtBBCiAFR +TU2DwmxlYWFpYXHoal+lYjlLuVFfOQ3xV37h/77n3e/2qtPpphcVAUwdxXlKUq4RMWjy0lIluFqr +bDWtaXUmTsUUhIACgRe44XiuqobO1VU98NXIuYGpg3OoHUk6BzEzcFAJpW1mJ26+4eobj8dZFJfZ +Q5b1C4mSbE/1LGIwMagO55b2f9VbZkf2XXzy8dhcqJbhnLdoGrLN2sX22DZp26J3MA8OofPgPsFB +F1fj9IDFm66p3/yd81//Y6OXvZYqCiUBc8YyEzKdvtQHEaW2puNtldKOF8EaeHGOXVaj/+JOv4P9 +5deBot17JPF6EzNahVqIeIIMmBkFFEHOfpU9SRJpc49p6H/45+IHfYHHrqC+/0+f5TxtZyjdf9u2 +pg4NSIJiVlQHk/RxLoRLy8fhgQO9wLMTYuvgbBa82xX+fJdA2H5/C78GPwcZgEZG6iWzy7JO3UAb +oRq3/LH1heG08tFchEZVUwRkKUjF4nh+dXllUFfOOUca6I0wqwfV86dO/9SP/49zzz1niNBQkSJm +jOKk9jUTeYwOGpPIVdSg1kaYmkNwDCYtFZLmF4xUkUHl/GBQD+tqNFqYHy+sjIfzMhhUo7GrfVQD +pBVNzG5hNRgMwiy0Tbzzy++qx0OLKFYtTSyIk65JaqZRwEGoMYpx9fZ7/Jffu+Xay+c/3lozGIMD +0TpLcaC4yh1v0Bx0AB0BNWyBdpB2SNojFpZttqLhhuPD13/z/Nf94Py93+aWjyJMQZpDVAolCsTo +8skkZkdBm/PyMPJFMv+/OEbnsnVPd/1TnyAiwv7r3YPy/rQWLUUFkvmUKFoO6T1GAILUQqYzmt1H +9cvCVFVymfWLxahhD2S5y7vEzmvYf+deg9gz33nD0J52XvGQty1aGr4kBNgzZOg9Rc+WoedehJLi +mybbtwU+jjhEuAqVmm6yhdHgwAi1ddua6mYTBgOrogLKVDtuCgVU43Q2m7VNsBhVkzKQJQ8I+OjJ +j3zs0UdNg5IuhZwmZlbPVXU1NAvRFJEBCBbUVGOMkSpEVIYWgaZqAouiYkIHVN4NRoM5cfVoYWl+ +vDieXxgNR0srK6O50cba5Y899tja+iUfppfPXXAtk8y2qj3ygYcf/dOH7v26+0MbzUgp1MykjgEz +WBbyyrcLIlQDm3Dwlrv3/etXnLv/my++91cufvDdcubcaIqqhVtDSNh+YgrWiAJWYA3zCIDUFmqE +ock+0Ru/rL71y+Ze/daFa+7jcDGgtdA4VNFFFysRVZjPjdhTkU2xaDt0614ss/+La6TVlVSzkqDT +Ll9p7+vYBjFpSXONGkWTd2bIi4xkakiLIueOrF6DTjopfW/f99mb6PjCXo8rjF15zM7i70rU7j2k +f9TON7PE+0gXqxg19OXcdxk19LRw+77irsfWg4D6uJv1yq0IYIowxWwdYzBrS2VDasY42wyTVQ1t +AFs4y1AnDd5oTmOMs9ksAWRJqcXMvK/aZvbe3//9tbVLCwvzhmiAqkHCYFTVdb1v375ZO33hhQsw +F8nUcThatEhOnZJEa84sZQxgplDYsBrMzy3SVQvLq/OjpeXV/XTV4SPHDh48UFV+MKyvve7mp587 +9cypT58eP3vu6efitFUYxF24cP6P3v/Hr3z9Pb4etm1MDTsS59zKXp34c2JUUQFbE9K8MLSN1IPD +97/1wJe/4dInPrD2oXe3Dz+08ek/4/nLbgancAAF9EANEjpGHELmIftvk8PXj07cNrrh9sHVt8u+ +61w1jIjWtgLASwSovqA6iSNjuZJVUMTr+p78X3fafmmPvsexF1Rqx4sAAAHOSURBVJu/EiOhZ+A6 +0U4wyZik/7sXoKlLA0tCz4BuK7JCbjDbo9HRuXJfmIvw2Uf3ezsrnx53Z9439/3ofpfV60rBcv65 +JMHMaKBALWdnskHr2aY8y30BefqxZxpSgtPu9fTU9Qocd+UZWmASMS4R6wwuS5cZLbYhNJO2Hblo +MFepiJkSrdKrNLGJMcYY1VIzAwPhvHz6k6fe9773C5woxMwJIrWuqqoaXn/DjW964xufPnXqt377 +nZNmmqJCBSOcRROGNPHMUj80MZBBnK/qoYe44XhxfrxvMJ6vx4tr65Ng7sLWzEt754kbjl1/w62v +etXHH3/skYcf1igXz58WqwjnnXvsQ4+eOvnUjXff0rYZuTTNIqWpCNMVQJ5GSy0vDRAKHKJGqgxH ++25/3crtr4vfeql5/qmtZ5/ChTO6eSGsXwhbl02j1aN6cckdOOSXVwcHjsj+4260rxosCh0ANdMQ +QGUSdNAk9JOC8SyoglzJbmYJWX1RoclfxKNbhN3q3bU4sTPbsOfYdFS6FZ0mNJBgXxQlE1gSJi/m +7AongJ0W4fP+yz+H0bdZe63/rvl3xR1ip7MGK2bfcgMmwpL+ErPGFbaVPDPshix29v8Bx5meidhb +nOAAAAAASUVORK5CYII= diff --git a/lena_base64.txt b/lena_base64.txt new file mode 100644 index 0000000..3d9bacd --- /dev/null +++ b/lena_base64.txt @@ -0,0 +1,1611 @@ +/9j/4AAQSkZJRgABAQEASQBJAAD//gAtSGFuZG1hZGUgU29mdHdhcmUsIEluYy4gSW1hZ2UgQWxj +aGVteSB2MS45Cv/bAIQAAwICAgICAwICAgMDAwMEBgQEBAQECAYGBQYJCAoKCQgJCQoMDw0KCw4L +CQkNEg0ODxAREREKDBIUEhATDxAREAEDAwMEAwQIBAQIEAsJCxAQEBAQEBAQEBAQEBAQEBAQEBAQ +EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ/8AAEQgCAAIAAwEhAAIRAQMRAf/EAaIAAAEF +AQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKCwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEAAC +AQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZ +GiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOU +lZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T1 +9vf4+foRAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy +0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKD +hIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm +5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A9XeRA2c8LyT+BqK5mUFiQcMrAfoa+BnUR++Rg2rE +EkqhU4Py5z+PNRll34z1wK54ySlf+tmUoNIuWLgSGMjkY57dv8K3bUERsD3BrOZnUTsQ6iwSA59c +/oK8f8fTo8CQqrbkQg8euf8AEV2ZbJe1SOqgnyv+uh46JolujmRfuFevc4xWxaSLIMpyFYMfp1r6 +2s1ZehlGLUm2TrMnnbhnkdMc9aVJ0KkjJ5Bx3rhvobKDT1B3V3UqeApP+fyrUsGUkHPRduD15zWV +Rpq5UYtOzNS3jcQqpU/LtBOPQVdjlUToxB4XYQeOcVwTavY3UW2yy5BBII4GMe5NSTSLICQTxg8j +tQmmrIlxfNcjCMC7EEAtkfmf8akgZUDMxxkL29jSukwcW27EsQAQZdeBzz7D/ChSCpGRleSPwqb2 +Rcd2NlYMSVOecnFDyKyhRngEZx1ppp3aJcH1JBKqnPXkEY/CmvIhBXd3zn0qo6O7Js7WCckq5Cnh +yxHcA4qvnaCrAghsnP1qqu9zOmiRWxCWKngcdOee1MV1Z8DtyfpUSfcunpf5k/mBW8xgQBkn9DUa +sBKrY+58x+lTHR3ZdrodfOJW3qD0HHfpUPmK5ZFz83fHHFabvQhKy1GxSKrqxPQNnjmmxNuDtgjO +7r9KrSwuV3Bv9Xgjnbtx74x/WoyQhJbuB0/A/wBKq6Y2m/uM+VgASSMqpBGeawdTyyFQDkuD0+vF +ddPocs4u/obnhK4jAjfJxgLwO+a9L0mRSiYz1BPsK86umm7l1tY6G3IwMBI56fzzWYqlNqN1XqPp +mvOtbQ56OzJVcGPOOqr/AFqSRwxDgHAb+WKc5JxsjRJ8xCAfuHg570pG2MhiAck/nWDaa0Le1iUO +rRlQe46/hTpWBj24OQCORVxfumDTTO6+Fl/apLNbPJiQvu2nrjGK9ktHVkyD1ORXBU0qSufK5rBx +rtvyPPvjVo99qnhq7SzjDMY2wM+1fDyxyWt9LbXCFJEbDKR0wQf6V9DkVSMqc4Le56OUtOlY34JF +G1yeFAJqwxDySFWHzg45/Gu6fY9yKa95j5CWjUKCfvdOetIqszhQMdBz+NFR3VyqT5W0/wCtyYfL +hj0Chf1PP0plx86OEOTnGPpis7o0W5OjhlZlBPJxgZ/izTWVjCABnPOe33s0SeoKLSKdtazMyttA +CEAknH8NdV4o+Nfw/wDD3heTTL7VWe6Nv5XlQqGO4DHrx0pyw9TGSVOirswxDUFzSdkjtnDBNqtt +PXPtSuxY5JOCxySf1/WvBctLGqQ1guMEkjH1/KokUseDls5B6+n50m3Z2Y7dzV0+1ZFBJxk88c9K +1FfZyxOc8ZPOM9RWFS+phKSbsZ2rTo1vIgJ3EHHTrivIPGskhjYKVZ85HOCOnT9K68uuqiTO6gvc +Z5DIrC6ckjCsfYkVrWu5kVmOFbJABJHSvr6r0SIg7t2LyRsCru/OCR7UyQlWWNWG3HUHrx1rjfkX +e8tgikZZ1Ug5AC4JJ249P89617UKHOH6kjJ7ColJpaBypu5qwNuXATJHAIPUGrke7IyrFgD16YxX +JV01RpFatMmjboQpUKp5A74/yPzqWP5juZuCCcY9frWSd9SpJatDmC4+U9eevNCEhyyt0UHr3pPY +LD42KqCynOB2/wA+v6VIpLJlmAHYEfrSlqUluxhYnCK20dc+h/GlJIQAgbQSBxyee35/rVJ6XFyq +9hq7nZZBke2cdqaRuXlsDJPB5wOf8OKpXSE0rtIdgKoCkjB5I7nn/GoTGCSxB4znB5pN9GJLW5IG +cABpG9MDt+FRxLwTggZ9Sc9qTfUUUkrIsiJSpIZmJz0/XFRFSAwViNrYPpjp/OjR6jTezEySuG+b +5SOKa6gDKngnGcY5I/WqSYmyPCKME84wAOwyaRY1PADdMHB6HtVINUC7nGWX7vzA55IpGjBVnIyS +MdSR2ppXZL2KVxGzHezMAM/Kep4FYtxEXcoqkcbiR0x1/TBrsppPQ55NrUq2M72V4gQ/KSMn0/rX +qHh298+FXVsgjBAP05/z6VGKh7vMJPmVmdhaSCSMxnAJ70SWjMxGMjGMj614lTRmCtFjkty6AMFz +/Kle32HfuxzwM/8A16wejsy09dCCReQO3AwR2xTGVeFU/MOMj9am9kWNdmUruwBjuODTd4ZQVY8d +vwrSN3HQzkrE+nalNpOopfRMQEPPuueeK+gfC2sxalZRTI4O9QQQa5sXHlafyPDzelzRVRG7e2MV +/ZvbyLkMpHIzXxp8evh7P4a1ttYtIStvO2JCo4Bz1Nb5RU9lieW+ktDjyiqo1XCXU83s7koo3yDO +OcfyrVWVTIFAOehXHbHSvpZpKWh9StY3ZIuWXcjcA/MRjv7ikj3KcK3y5OOOoz61le+jNNVsSlix +cfUEngnBp53AbgAcgDkg8Y61m1bQuN+pMisGVU5z1yD1qeGFY42nuTtRMZLdMYqG+pVlY8s+JXxS +s9NH9kaJdILmX5GZj8q/U14Dd3d3qV3Lc3cm92cksT7k9jX2OTYR0KXtZ7yPnczxPNU9lHZH6NMQ +RsJ5PPFPVQTkg4zjHT8f5V+ayue6hHUKQFBwDkgHPalskHmAgYJOOh6EVSVl5kybaNcAxKoYYXIz +gfhTJZSFOODjA5rmauzCLV7mfqTmSIuuRlT1z+VeY+M4ITby+b5wCZztYY/I16GAS9od8G403y7n +jjopvcKQQBzk4Oc/r61q2yboREV4ABAxnIzX01bRJE0nd3ZoOyxSsjSFyhxuU5AI44x261CWIAKR +7vlJ+UcAe/4VzJpaGju9QVF3qVBYdMseMfh/niti2ZAFChSTjq3vWU7WuUm2akL7QDGSFIJGTkY9 +auIxUh15UL0HX/63auab2RorvUsxliQxU9DUqlURgBnBrPTYbHBgqgurdgx/D9aCyM+7J4PTpj3p +2Wwrt6ocruYyCxxnPH0pUkbZz2HB9v8AP86kqyuDzF2IYqAOpHH4U0S5UgkAbuSw7nkUO73GkkrI +WNlRyzBSCCFHrj+VIsirKVAAJwWPp/nFVe1hcvNdsQzAsYwwcBscDr24okeObcWY/Mx2qOnOar3b +6kNSWkRAyoBHhugPHUjPb/Pao4nw2SM5HAA9/wDCpaVtBRvd3L0UoyBIdhAxzwfrUU/lqzBW3AcE +9PxquVWJu72I9y5yMMC2Dz/Dx0qOcBmYxqduTtyB0/lmlZXKT7iM8alRIpPTkdSBUQK7yFBwfmzm +mrbjV9SQSqw+Yc9AR0NNVid8gwRnAAHT2o5tB8ulypOVOflwQDhsfj+HH8qzLtBBIwhlZl2lQ+O3 ++e1dkbaSRyaq8WY10jlQwAHcAc55OTx0Ndl4QvyMxbsHA6jr+da1v4bRno3oekae4CgDB6Hg/qf1 +rZUK6qrHjHQ9MV4dWPvXsYSepHGQjZxwRxxTiY9vC/K3YniuNrS6Y9eYrOTEcMODwMVDKI2OQODn +Jx+NNWa1NY90QOVC+WoyCO496jG0gknG70HGa0grJEy11I3AZdoJznHHpXcfC/xU1penSp5W8sn9 +3u4PXpWWKhzU3Y5cXT9pQlF9D3WyuVmjVlPXriuQ+KXgu28U6DcQPGGJQkEjvivPhUcJRqR6HyNC +fsa6Z8N6ppF3oGq3Gl3SuskEu1QU5YevuatQSl3J3A+jdyT/APq/WvtudVIqa6n29N3jdFyKWN8I +RywBJIJ9alLKMZRVCgjjngj8fpWFtTWV2S2wEhCsVUAANxkk1aityMKGHXIwc9/aia0FB2lZl1IY +YozPM+1UUkkngf5zXinxZ+LSxifRdBkZmT5HdBkA9K3yzCPFYhLotxY3ELDUXJ/L1PCpVmuVknun +kM+8tJv4Ocjkc5/P0oVBLMpjBUKflDdevtX3kkoxsj5CE3Uk5M/SBYdp3hjnGBmpSrFMgcg8n8K/ +HZN2sfYq3UXymc/KDnOffGKu2dqEUFsA+wolK0bIym7InlIjU5HA5545rNklLAI3OTzg9hUQu5WI +itLiXMRa3zkDkHIOK8p8eF/JdlbbwR0571vg5P2qsejh/hdzxuVZhfKVfJ3HqMgjPpituyUIRzye +c54zx+tfVVFoiI9Ui+yNsZpozjvj159qZKDuC7jkAYGK57K1mhttu8RYAVlIPH06YP8A+utK0Ids +EHtgAcVnNWNE76o2YizqpwQMYYf5/CrUJCHIOB/EAeSf84rlla9ytUuVE7EuAMZx/Fk9/wD9dPEh +U5OCAODj3Pp0rPoVvuLGxBODyOoHXv1pwCKAApx0BHH0/rWiSaYSb6jioIBBIznBxk5pY2kiZU3k +AEHjr61nypOxV9NRrk4UITgt6+/+fzp8D5bG3GDyxPH88d6cVZ3KnazJpfKc5QDeTyAMAc9vSs6R +3V8Nx2AAzSlG4U2krMgWdm46rnABOe/+NTxurDceGA6E9eaEtbjnsNLOG4xjqQDxSq4Y5YHK/KV9 +81VkZO+6J0MqoJA4bkg579v8alLhztBPbByOO2D7VS1SIlo2LlFViTjbyR61Vc53Ak/KMZPHFJxY +ReoHLRgCQYYEAk5601sh2JUZwSAOR+H+e1DSWxSbYFtw2hegAxTkU7BsADHIOeRgGhK2o76WRVuQ +YULNjaMsAO+P5Vn6gEuELImCADgDGT/+r+ddlN6I5mtbmPPHht6twD0xXT+HFbKuNxwOQQMEVu7u +m7mUoxUlc9H0eYFFJbcOAK3Ypd42ZIIHSvHro55rViSyKwXcwGMAZFRlm2kgjKmuGcbIS7DZMOu0 +HPv2qH5SwUnIAHQ55/z/AFrGGujNUrDHjDPtycjpkZpjw4GRycZIzzXQttxN2aRA685IPPQetV4b +mWxuUu4Ww8R3Zqrc0Whcqasz6G8A+JIdZ0uGdZPmIwwzkg123lpcwtG65BGK8bl3iz4jHU3QrNeZ +8u/tL/DSSDHinTrc7oTiUIOq5yTx+f4V4LYXDBQEkCNgEbj/AEr6bLavtMKk91ofVZbUVfDx7o14 +5Y5cBY8Z4AbnHrT3KscEd+R3PA9uOK6mluj01dKzJLdCGX+E5yWA7f04NaNt5dtD51w+1U+ZmJ6E +e/4VM5WWg4LW54t8YPjIUMvh3w/IDJgq0itnjnHI714hdXt3fwJHdSfMjEhiASMnODgc19jk2F+r +UOaW71Pn82qqtVUFtH8yGK3c8yMcgbWzxnv9Kv2oUYhEm3pvfGdoz6E88V3T1djjilGN7H6ONEQM +FSo6HipljQAHcrE88dBn61+RSSvZH07kyzDbg/OewODjtVgzKoB3gDOByDUVHdmdnN2K1zMGjKA8 +tznOKorucZ2gYGcZqKfvXZajyoW7Yi3IIwT1x1PtXlPjuRzbSOzsASTz6V04RfvUzvw/ws8c+1AX +jYByW4JH8q27XYCDtYBTznjd719bU+FGUE1LUuGV4yPlOCMAg8eppjnzeWyzEAZ9BXNuNu0roIwF +Iy+CwyAV5/Ote1wQNoyOoXsR61NTY0UtmakLbVYg5C4IyBVmGRXZmAAb7oH0xXK076Ftq1yzE+5T +5gHI+7+tSI6MrMx4HTI4I/Gs9noPSzGCVVkVQOSTnI5NSwO+0b4yTnj0A7f0oje12U7LRDneQBsp +t2jpjOfWgTNIuFX5SeW6Z7URWtmOdkrokQHYcSqOOcZ5wfXFRglTgAHOSeOT0qpW0YRWrQ6WUMpj +CgHjIBOPaqkrM8YVmbjnGf5VEtTSKsr9CCVQzhFLbi2COnfvTo/LWR234Yr1xjP/AOrNOydm1sZu ++tgmuI0OyMAMPvEd/wDP+FMSYs4UnIHBPOaaTlqyGnFWZbgYFPLY857HrUwKSDcScg9RwP8A63Wt +I66GcnbUmlKkEEgHgcng1VLKTnA6dScZoklfQUL21FdQEBAAVegx24qNywbcy9iAPf0rOySSS2Nk +rbiYVuSQGxgrjr707dglSOSOcfTGKG3fUfKmrIguDgFVAKg4BP0rOuI/PDfOoIwQCccjOf8AP0rq +gub3WtDGaUYmXdIqFQFJwefcY6e9bugOPlCLtAOcY/z/AJNdEvejdma2TZ3ulOVwQmRjGfxreguA +EBBz/WvKqrU5qu7LBdnAAGSOSRzSLKQMk4BOfWuKonaxjpcZIxPBAIyGHHbNI7ojjLceo5rNRjfm +7miTeiB1JUMB17+3+c0xm+bcwz6cdD0/rTSUtGvv+8fUgmkVTgNkEHBzxn+tUrsLKrqxyM4x1GO/ +1raycbMEmndHRfDbxHDpGsLZ3ChobghfmAOG9P1r6R0ieCaFXRV5APAHpXj4jDUfrPtJRTb62V/v +Pms+pSjLnXUZ4n0dNZ0ma1YHDqVOCQcGvgv4n+Gb/wAC+Kp7KfzTBKzPExPBHpn/AD0r3MnxdShO +WGjJqMltd2+4nIakXJwZlQXJOAzHIGMHitSJ0kCorYOMgbenpXpShrY+sbVrmhEkMUJuZ22BASx/ +LH4//Wrxr4s/GI25k0Lw7IUlJwzrJjA/DGDXXl+FeKxCT2Wpz4itHD0nNnhMkl1fXLPdTSyPM4yW +ySSPTPetUWEkqYns5dzAkuU27vQ/hX3VRuSXNd22PlXJOd2/+CRyI6hlYKpYjCg4HQY6f1qNbjyh +tgGZWYgg/wAv0FczXNub3TXkfpO28Bi4YgY5zxnrUlqhkdQScDOD3r8id73Z9I9tCe9uYrePy0PO +R2xWU2pDcHLgcYrCTuro1o021dktvK9wxJYEBcZJPrTyjq5RVzk8D/8AVVU735UOdouxHeKTARnJ +zgf1ryb4gQlYJGCMeOueDyf0/wAK6sEr1UkdVCTjFs8bAxqTEhgeu7GPX/Ct6wcpGEVT1JYFecd+ +v+ee1fW1fhRitWXEhZjuCktxypxxnqaaApCuBhhwQDyfQj6Vya2NHvYIlJIXd3GOcd62LRGVjGXw +q5GS2f8APeomrsqLsjVQEqgVcHAAIqdVBjG85JHGB2/OuXmtqaOCexKqFpAy5DHHUc9Mf5FPOQoI +BySPmHTr/Wpje90NpNWY6KMswBA9ev8An0qVUTYVQLkYJGT16Y/kfwpxtezNNRsjSI+3lsnv61KI +2WKNi6MDkjaQTjP6UrMG9bNAyFAC4wHPIUeg/wA/rUZkydxGcHBGeh9/XvTaaHFJofKpTy5idytg +ZXnH+eaiiO5WDRscEEsOin/OKXLKWkUHMuW8mTSaRqKthrR8ghjuI3DI/wAMVc03wLrOsfO6x28a +5Z5ZCQEXPHbqey9TW8cHOXvTdjzMTm2Gw8Lxd32X6F5/hZ4hWNXS5t9xbBRmIZFzwW9CfTrVS5+F +/jaBQV0rzdoLOI3GVA7sD0+nWreEta0vvPNXEOGbammvPf8Arp95hzWuo6U+zULOa3LglfNjIyAa +SHUowpDFVHbH+eKy5ZU3yyVj2YVaeIh7Sm7omNyJVUFcZBBOf50oZGKqeTjIJHXtR1NVFqOhLCg8 +td43Z4yTTNqxB2ZTk8ZP0ocethp6tXGnbtyXyemMZzQCFUgkYPzZ7nk/5/Csmnzalr4SrKBtJdxg +8gAc1myEhxgHn73uSa6aab6mM7pWZSupChCKQQvHHoO/vWroskgZUAGCMg+9dErOLsRG6tc7nT2Y +BQvA6/TpWvb3G07MqMjJH+fpXmzu2c9Ral6GbcSCegwOegp7O2Sy9+QAOlclaPcwVkyPzBjI54yT ++VBVWYlm6cZHFYyslc1V0xwkZMIWGCCeagmnABI6H5v/ANdJO5ajqU5p5BwoDDjA71Xld3bDdwBn +tz9a1toONkQozxutyjkMp3A9MEdq+hfhd4tXV9LiSV/3sQCsO+fWuLFwek10PJzqj7XD8y6Hp0Li +SPGeCOa8L/aO+Gp8RaDLf2MBNzbAyR4HOBzUUqnsq0Kq7nyuV1fYYhXPkS2S5Qr5sTKQxjOVwMg8 +j9a27FPLDyTS4RPvEnjHGeK+unZK590pcy0PNfir8XYoYn0bQZwzHKOwOduBjJ/z0rwidp55/Omk +ZmkP3hySD719Pk+E+rUeeW7PEzLEKpNU47L8y5Z20ZIDISA+fmxx+dX5oY1jXahXjk9eOPXGK9Ge +u552qe5n3BjVCAV3qcBc8nA9e/8A9eqpBYb92G3AnB7ULe6NVtZn6ZDfK2FHXoQKv2kYt4jv649e +nX1r8bnJJXR9PJaWRha9qGxiwYDPTJ4rmI9WEr4iYk5AwemDTpxTPSoUv3dzrNGGbYFgTkVcaMFs +ccY5zUxl72hw1E+dkeoKfKY4JIyenHTNeT+PWZbWUjI3ZJI+vNdGDl+9R14ZXg0eKNLvvXwQ2w7c +55ras3UZJZMAgZB5b/OBX1078qZnDRs0vMC7MSY3YUEknBpqkBQMg5HT0P8AjzXNJtrUq1pXJoUR +JipJGOMMec+n861oImli3umADg81hO97m8bJamnCqKgQkKCPfkf5FTwiQgqw5x9eK5G29jTls9Sd +gobeh44wMD/PSliDvwByBj15/wA4pJsTjbUmISNVUjk5DYOQPb2pSyNHl8ELwB1IPaqTsVFOWoyR +41LMrEDgEEZxyKEO07gm7uSOR06e1HNdA49xzyF5Dsj6khVwcAGprLTLjUHIVyioMkjqBW1DDyqt +N7GGIxMMJBt7nQaXpen7AfK8zchLlxkbQO3bqP8A6/YzW8turtbpZKGc7kG3lmwNre2M4/DjFerG +Kp/CrWPksTiauJb5pG7odnYvP5t2uWzwrEjByQQTjqeOBk/St+wMTSrLHLgCTCkqRyMjCjnB+mTx +yRWdSfNK3T+v6X/DM8aupXf9f1/l87bipCU862GGjGN4I2q2Mn6Hk5xk+9MfUJ4WWOGNfLiOdzDC +lvXHr7sSfasmnJXf9f1v92mx5tm3Z/1/X9avS2Fs7oBNQs47lp0+9OmWYdPlGM4/IVzesfB3wlrq ++bYxvY3LrhRDyi4PcdP1qVP7Mldf1/T/ABuzfDY2tgp89J27rp/XRfh3PNPFHwl8V+F0a/slOo2a +E5MK5fB9VrjIbssSrEKQcMW7c459KznBNKUdj73Lcwp4+lzR0a3RoxXYeMbQCAOO1PZ3mQAdSQR+ +tS7tKx6EIpNtkZfdJwW+YZOB7f8A6qj80HhzjBxnrg/hWPK07o2TTVmVp5XdjvwMEdByfY1n3LiR +TlTuRiD8v1Fbwi1sTN9SheMwUHIPJOAa1dBVjMoZRjIJBB78/wBf1rebShdGCd3f8DvdOQBVXJ2g +c5/z9KtrlGYE46g4PTvXmXTdrmdRO5dhlYEfN2HI6E1bVyRnkHngnoaynFtcxg0k7EZZYyF2nk4P +NI84jyCTg4681zST3NYoZJcI+089DxmqslwQckHGegGcDNZpJaGqjfcqyyMjlWICk+v5VEZWZstn +gY4HBPatumoKNtUD5Kkk+pII/Hiui8FeKm8OatFM7lYpDsfA6j1/z71nVhzwcTCvT9tScO59O6Bq +SX1tFLGwIZQRz1FampaZBqljJbyIDuUgg9686K9pTsfnNW9CufFvxo+GUnhDxQdSghAtLp2cHGFV +6+cPit8S10yH+xdDnAl24kZQcIT7/jX2OSweYOnF7Lf5H2sMUlhVW8jwrNxdyyXExaRnfJZm3ZP1 +qzDazb1KqAfcgYGa++aUVZHgqXNK7NEu0JQgAgElRjPcDHPFRy3+xikhUnhQCuQfwxWS1dkNxVrl +GS1kLmaVioPQ+o7/AM6aWdZNqlScjkYBPt2P4+1DvexpF3ifp3ZWod9xBzwBnrRq14sMWxGwAMZI +z2/+vX4zOzlZn1EbzqWZ5X418SJZKQJRkc55/wA//qrP8GXh1GcXEiMUJwuGHTPWu+lR5KXOezdR +p8vketaTGphwBtwPbH0q2wIIdeCOD615zdpXR48tZO5Wvt5hJLbcgg15J8REBs5gGAznI7EY6f59 +67MG37VXO7DpKLPCJGCX7ZYtk84Gcfnj0rctZ4MmJFdVDABiQfx4+lfZ1IpxTZyxm1JpF8SqgUF/ +My2SMnr7/wCTUiu7kRhjycfT/P8ASuKS5Xc3Ur7otRSrsCscleS2Oc/WtS2kYJsVgc8nDcZ6Cspq +60NYOz1NJZQrYDAjtk9T/wDqx+dWRKVXPYnkgH2wK5eXW5q5WsmSBnYMzNhsgEHsMf5NPjZmUqW5 +PGQfvc//AKqz0voN3elyUsAAS2Bxnk446VJELi7njtbSJ5pZQFUICxJ9MetVFNtKJUmopynst2Wt +P02wu4Ll9Q1VrW6U+XDB5eSxBwQT2/8Ar1oSv4bsERUR7iUbVZpDwzfQdq7aEae7Wvn+h4+PxVfn +cKVrd/L9NTE1HUbi6bYhWJDlisUYAJ9MitDS76dbVo02xx5AIJGeg5/Mk11ptxucFaC5UpO7LLav +Irm3ESgbRgkEKR0B4PYfz71rW19Ck8duVdnV4/Mc84PJ47jv059xUNSvc45U1yWRo2iGJVYRl87g +ioCAGySQQPp0H4mtu2McUHmzEmVlODvHCgchvQZPRfzqXLTX+v6/rfTzq65paPX+vn/Xqa1tcTW6 +CK3O4fJtJG1YwV6KO5weg/OtKKGYwxoSzTFdqApllIAPyjov1PNZyT6P+v6+77jyqjind/1/XXvt +u2aFtAsceJoyCMs67+hzyHkPXr0FXrZ4hDlT+7DDaSNseewA6msXK2lv6/rZfM5pXlqv6/4P5I0V +lEkSAjKMMYcbVz/u9TXAfEH4L6R4oifUtIKadqWDl8bY5W7ZA5/GtItL4tuv9d/Jfqa4LGzwFZVa +f3d12/4J4Jreja74OuH07XrNoJt2Vcj5ZAf4lPcdfyqtHqZmTaMDb0bPIxjHerqRcND9HwmIp4qm +q1N6D47ggOVO7APzY5z/AJ/nSeaCNu0gg5zjP41ztHcnYpzM+4sWOO2OPeqMzhFwGPPTI4zn6VpB +XdhNrluZ9zOwYlmDKSA2Rx0A64re0J3ecDd1wDzntx1rSr8FiKcbyueg6eC6KrjcRkc884FWpFKt +yBnb+VeS2nK5nOLTsSRsSmW9DkGp4Jc/LLnJ4wOtXe8bGMo63Q91EyZU8gAY6mqUkxUt5in257f5 +/lXHJdTSKvoMSQumCeMYHbApHHzZQ/MegHOD2FQuxrs7MhZC6ltp29+KjCEtnPT3zkVe60GnZjkR +mUgnP4dPamTxYUYJDDJ60l3QnvZHtHwY8ZuYBo147ebDgIWYcr0r3ewczLkA81wqLhOVNnwGe4dU +sQ5LZngX7bGveHfC3wg1XUtQuYUvWUR2akkM8p6BcA81+TUt1dX05urhsySNudi2Sa+74Lp/7PVq +PbmsvktTSlUl9Upwl1bfy2X6liGEMNsXBL5IJB24/wDrfX8K1GDbFVQh47LgdvSvrKmrsaQVtWQ3 +FwkJyQrs3OADxweOMVHbASn7QR5e3OWAzk9uM9M/zNC0Vwa0sRzTRSzYcAqQQSq8L17UsFsXaQpv +8sHnPVhnk1E3yocE7+SP1F3JbQMMc9xnn+VcX4l1YW0UkrNwMkjOTjFfjUI3lZn1+DhzSufOHxA8 +TvqGqNZ2jsTuAJDe/t9K9B+GxCWkJZDnAwAen1r6PE0VRwkTuVRylKJ7XpRElspA+8ME1YkJ3Mq/ +eB3A5r5mzcmzzpL3mU9SdlgKluo/SvI/H8nmWcrup5B79uf/AK9dmE/io9DDW5GzwGRw+pEKc7hn +JG7knNb9gqoAoY54BweBnv8AlX2017q0PPT5WzVjtZQVbI3YBAJGev8A+qpBkID1ypBJ5/EY781y +OPc15ltEsI7AlQy9sk8Y7HAq9Arb1LP0zxjOfxrGae7NYNWsaRleNVDkZJDKWOckD/8AVVhWdjnd +gYHyjp/niuVq+h0XtqW2nQtlYzg8EE57VKnA2IyjOA2TwP8AOKl6BFaXY5huLKCAe/bvjFaeka9D +4Utb2/lin/tK5tGj0ueP5RHKTgyfgMiuecXUjyR66fLqOum6bi3a/wA/VfNHKaQ95FC0d1ctNKXL +vIT3bnOcdf8ACr5dZGcLJkIxIcnIXAHFer7qdoqyPOqwbfPLdj5hIjlYThWAIYjAHTGfz/Stm2WY +QgsvyBixbruOM4JrS+hwVUrajbVZ/OWRVJMiADYTjBJ7dj09fqKuvcCBlRpFMhcYC8YA6gcc/wAu +aqTtZf8AAOZRuaVrfqLuNSHaaM7wrDBCjruYcY6f4V0ViDdJEsrs4Cbwg+bcc9lP3s+p44qZu2rX +9f13PPrQaV0/6/T9PuOstYoWjLxEQhwBIVkwcgfxyHp6YWtOyuEtYPMRBGjtgZBUH12jq1c7knt/ +X9f8Fni1U7NP+v6/BeZbMyGONpjmUqGXepyQTziMdD7mtARSEeWpeMleCcNKwz1A6AVDXf8Arv8A +Pu+nQ5nZb/0v8vzJ7VNkmzaxk3ZZg29j7Fu1XFUZJBXccYH3m/8ArdKqHRP+vTy83qznq/1/X6GX +rfhbSPFtq2n65ZxXKODgON0iH1B7V84fFD4N654C3atpUj32lAlmcLl4vrj6/pW9OzXK9un+SPay +LM3hayo1Phk/uff5nnia0HARWU7CTuAxyQPzq3DfCTpyMcAjoO1Z1I2ep+gUpaaMdJMQhBBBBJ6c +niqcshUZ+XIOAuB6/wD1jVU1d3Y5tJWRRugVj3ZbAGeBkY9a3PDbIJUJYnjBJbOB/jTqfAx09ZWR +6dpcSlAFbv8AXt+tXZYA5ICcnocYzXiy3FPRlOUGJSzAgYwc+mKrtdgKCsgyScjNbxV9jKzepas7 +5ZgIycK2cc9M028iy7upwCM5HpXPNWZUVyysQRocfMwGB68/jU0ijy+COBj0rDdm76EOTtxuOO5P +Qn0pFjBZsDgjk1aV9yNth8SBBszwSRzTxG0i7ZAwOe/50/QiS6l7SJLnTbyLUbKTY8bg5U46H1r3 +7U/jJ4Y8FeCT4m8RajDaxrD5hBPJ46AetcWLhNzj7NXk9PvPCzfBPFqCXf8AA/Mb9pf4/wCt/Hnx +SZi8kGhWMjLZQFiM5H+sYev8sV4+kClsoOSQN3GD9a/WMqwUcswUMMt0tfV6s8Wo1Kp7nwrRen/B +3NS2cRENtEjHHfPzdPxqZ5o7dC5UbwNp46+1dLbk9DVJRsin9klnk86QhUccZYjAGR1PbOaWdniC +wwFQSSQQcj6Y/wA9avRuyM76XJNO0t712JjyFwSQePfP61ma9qUkdyumWBff0IHXOenWo5eedugS +m4Rsj9QdW1BEiZSQBtJweM14p8TfFYs4ZBHKSzZAAOeT0r8lwdH2lZLzPusNHlg2zxGaOR7yO6lb +cXcHdjABPbnnjODx9K9s+HwBgiK9Wxn659P6V9DmiXsbIjDttuR7TpDL5IIH9cf5zVyVHKbiOT1I +6V8im03fqc0/jMvUQGhIX5cgAgmvI/iHlbWVVAIKnBP6kV14HWqjvov3WjwNY2+3sGH3Sw4Pvn+t +dJp6liUKHKgDjBHXnrwK+1qbHDpds1svDOcMSUJAKtg5H0/z0pCFJBK8xsQee/p+ornld6FRST5l +uSJGQ+TyVBIyOlaVsrsrKgAAOAM4x7kf56VhLsjVXtc04ldAZHGwMADkEjP93/PpT4Cuf3rEDGCS +OPp+dc0rvQ2VrXRaIffnYARgAEHqR0/QVMG2HAXIOckevasWtLm8d7F7TbCPUNTgtpXVY3dS7sdo +VcZJyfYVR8YatYanrc91p9u1vYx/ubWDduwgAHP1POfes6bbqpLovx6fqRWTctXZWf8AXyt+JhLc +zXLIkZwrHaCpyM+g/Cr0US28aoSQWGSOgrvXuqxy1LXsasMguEVkPlxtklgTl1Azgeg469+1WIGa +d1n4jjRCiptO05z26k/5NVdtnDNNJ3f9f1/mX7a4V5tqIOE2KVOduMHnH/oI455qXbbx75w0k0pJ +RHYAsSew9cH8BTTad1/X9f1uc04tK39ff/X4FyCS4EsUKsDlThgwZFJPVv77foK2raUQOTGxwEBk +aRgC+DjLkfdH+yKbaSstb/1/XkcNWDm9NP6/r52XQ6jT3uJZFLy7AoyrMgbIOOETt1IyfTmup0+3 +kiVVQN5jEl/mEjnj1/hHPSs2krL+v67/AHI8HEbWt/X+X5s0YQ1vLtUEysA21OWwOzOf5VbikWTK +QqxYEb1i9e+W7j6VnfXT+v8Agfn9xwTXX+v68uhbtyhLKRkREA7PljB+vc0ya5jSHc0qgL/EDtT8 ++9U12/rzf6Ixkr6f1/w5Lay3dwUTTrJpMnIYfu0A+vU1rQeH7rUIJLfVzbNBKNrxhTgj0Oa61T0/ +eNr8/wDgHHOooP3Fd/h/wWeT+LP2MvD2sy3+q+HdbksprkvJHAFzGhI4UDrivk7X9O1fwN4lvPC/ +iKMw3VlJ5bHON3ow9j2+taz9nV+BO59pw5nFXGSlh69rpaea2+/Yt/bEcM6uCDzyeP8AOcVXFwC5 +CNtJxyT/ACrnS5XofXRaloRXk5fLFu3cck47c/St7wuALmNS/PU5Ht0FXUilT0KpyvI9Z0oReXGV +Ug4Cg9ea0zHGIyrKCRgE5r52q1z3B3M2+gzA7gZJJHHbmuF1nVvsDMHbaADkkj8P511YezkVFNpo +NE16GaYIZQSMHr7V28ci3UPBG4DGR6UsRBx0Kkk7SRCiBWOV6g8Y5p9xt8v93kkDhu/WuF32LerT +K5QsqjPIORT0IAJJ7ZAPWrXUUlfQkiZR82C205xnGT0qeBGHGACeQSeetFr7ENNaMsXFza6RYS6h +eyrHFGpZix9Bn/P0r41+OHxV1Hxxrr2MF450y3ciJN2FLeuK97hzBrEYp1prSH5nl5nWVLDtLeWn ++Z5WxZlkQDOzgqMbevB9+v8AWr9nGUUNKQ2RkqQQB9cV93N6HzUIu+hJczxRksjbGYYAUcfTJ5qt +FBNfsoaQlEBOOvA7VlCy95mr2SLtxMiQrEuHUAgcnaPUcH/OaNPs5Lq5BSIMxbBKep6/pWm0bs52 +05adC34jvJtGhGj2wO9wVJBx26V6l+zV8EP+Eg1eLxZ4mtzJHE4eKORcjPqf6Vw4/EfU8HOqt3oa +0IKtVUZbI+mvFmvRWtmzltuFIHOTXzp4o1mXXdRdY3JiViDnoc9OnXkV8Fk9NOTm9kfdVE4UlEzV +t2WVEJOGxjPOT1r2X4eyEW8QOQMA/MMdsYxXdmb/AHRlQWp7JpAJiG7pjjmr77VQgsOeOv6V8g0+ +Zo56nxaGTqpZY2wBjnFeP+Pw0kUisSAVIZgOR1/xrvwVvbKyO7DNRpt+R4bJC39o73KttYAnJ/L9 +K6Cz2ImCpBBzgD/Cvs6l0kkcMLXaRooqGIKqfMCGLDhsAHj86njjMgaUsBsbA+XORxmubRuxrK61 +FiYBhuYE/dJycAVpWpynzjBI4x0x9cVlU0KSZoIAuFVjtJBPYg5q1bsVIBbPzHPHH1Pr1rjbvodH +LpdFlXxnnqQSMgEdfSn+Tu3MxJ7KG7f54rNu60Ltyu7/AK2E1PUxp1rsiYmSZQrD+6v1/wA9K55G +a4cyH523Agjvnnn+VXRi/jYqkl0L9vDDCqAp+8JOFxnp6Y/zxVsQgSGaZVL4A8vPAx69vT2+tdTW +l+pxSkr2HyXDhHBlUsAWwGICg9PpVi1aeYjynXYvyHf1Zfb0GT9TihaanPU1TRq2NmDM0ZUlsZYH +gY6Dd6L1OKsLE6ROUmlcMpQLjaZM9FH91f8AP1UpK1n/AF/X+fc52m3/AF/X9Is2KyQb5okAwpTe +qfKp6bY/159q09H+1AiKOSMOpU7ZOUiGTyx7nGaJb3uc1RJqSa/r+v8AM7HR3KyPLEzKXcBnALST +H3z0GD7fh37GCZVhtoSWj3nmKA5yc8l27fSs29bv+v6/E+exdO0v+Gt/S6F2CO3mGwurKm7bDFwv +/Am7/wD1zxVWTW7W3uTaGVp54yFEMIwqnsOOWpq87KKu3/V/8v6v53JKTa7fh/wfyNSw0fxHrDRv +LHHawHPykdvp/jmt600LSrF1a5P2mQkMGkwSPw6V18saGr1l3/r+v18+tV9p7lPY1PNA5UBUHAx1 +FPW4kkO5ADIOo9RSbe9zl5V2NLS9Qycliozgg8bTXz/+1z8Dz4y0g+PvDkDPrOmgGaJFBM8I/mR1 +p0mlOMn6f18zry3EvA4yFTps/R/1c+MrDVipe1nGHQlWB4IIJyCK0xdF1DqMFuQew9q2lBp6H6rB +q2rI7iUBWQMBtJwQTgHHTiun8KyMZImZiSMg56E4qK+lNpmlJc0r3PWtEO9Ewdozz9DWozEOVBzw +COa+Yqr3zafxWIL3ItypweRkjjNeS/EpTDZyTohUjnI6Y6/lXbhIp1ECk1FtHkvhbx0ya2tqZWTL +EHJwTg9cds4zX0R4a1cT26FXHIwSOhP4evNepmeH5GvNGVCo6kGb86bv3gDdeB7U3CNGVQjuSP8A +P+ea+dlHU6ov3SFeULg5xjP05/8ArVIjEglz93JIBx36VWqBq+gRMhAGF7Hpn0H+fpWhawq53sV2 +Llj1A6UnZag4tK587ftKfFryN/hPR55Ffbid4z0U9vzx+dfM/nzGRVUgJkgcZOCf51+g5Fh/q2DT +e8tT5TNKnt66h0ijSs7VjGWLYTcTgqRnAzz+XT1H1q067VCoR+6GUIYYx07fQc16crtnFZJFBpJL +uV4YjhQuDgEDPb+lWzKthAsKKnmY9OmfXp6fzqmnpAhNasbZabdX6OsMYfb97DDJPtz9OldZpFoN +MtPtqFQ+7aBjJJHJx+Gfz+lXLVWOfmV7dTr/AIe/Cy78aa9HrerROLZGDLGVIJ7/AI9q+q/D0Vn4 +fiisrWNUEQCjAwK+Rz2u6z9inoj1MHBR97qeMfETxS1wq2cUh3sAD9K4WC2IhaYtySQM8EmuHL6f +ssOr9T6vFTvUsug2UKJQ3GRgqcZOM81678O5HaKMjjnBBGcHjvWeYaURUdW2z2LSZCIgNxbjgYPA +rTkDDBAJOORXyrV3octRpTZmasC8RDE5x19RXjfj9gsUgOec8ZAHP+f1rrwN/aps78MlyNHiLrnV +GLspUNgZ9O3HfpXR2MQEauQoHQYbIr7WorRTPPU/fcS7EGt5djR8iQDr29Mfh3qZZnMRBQk7sDuc +59O+M/pXLJ3Zu/ed2PiVnl8tzgk8gHqOnWr8LmU7SQOCufWsKmli4mpApC7cA4PG3nsO4qzCyINz +YJzzzj8a5ZNp2No2a1LCZcgxqCMncowTTpbhrGFpF+aVh8gJ6e/6Vm4vZFuVldnPgy3chLOejM2T +g55/pU0USozGM7uVXnAOcV1wXRIxm+rZdhRIE2oT5uOXPAUc5GO3WoTfQxy+ckjM5DbATg56ZGfp +1qlHmdkc0trlnTbd7l1W7IBbkAHn1yc9cDnJ/CteKB0jWGJwpAIEm3Oc/wB0H26tRNK9ui/r+v8A +gGLk7eZr28MUVqFWWJWAClgche3/AAJqtJZKFYKudw3HzCd8h4xn0FZOV9f6/r9DC8lLX/g/1+pP +cJBaRxtO2CAsSBBkc9lHf6/5E8VwXkMMURQxNkgNgA56t6n2/wD10av0MpJS/r+vQ6jRg8iCV3lh +82TBYZMknGAFHUf56V0l1qdjpFs0U8gt/LXcYt3ztnuxzwOOn6mobV7JHh4qLlPlj/X/AAF0JNIt +tb8ZGKGxjfTNNjjBZ2Uq0vbIHGRx1PH1rudI8OaX4fUyCPzZJMFp3OXz7n0rtjFUY2XxPf8AyPBx +VVX9jDbq+7/yN6Oe4uSFQCIKu5j0zjuKr3JjQD96HOcq/f8AKnsrvc8zrZbDI7+GZ9iITJ0ZR3qz +aQ3E+SgCLyAScFT/AJBoS5l72gT9zUtxpboS8soL/cYj07H+VbNu9nc2n2YyKxwQAxBBHcHNP3HH +lOaop7nwt+1z8EZ/BniAePPDtoG0zVpSs8US4EMuCTwOgODXgNprBIKsx+UAsCDzXVTkqkFJH6Tk ++M+sYOHM9Vp92horfB1JOzr0yW9OcV2XhHLyAknA5I6c81hibezbZ72GupJI9g0IFYwGfP0rWkKg +MoXjpkH8q+aq2bOiXxFeeMLGXILY54Pp/hXmPxGWBbCcl2GRkhs85/ya7cI0pq7I+KLSPkfUL6Wy +8USeU5TEmQMYwM19FfDfxG81pbFZMgrg8j6ke/4V9VmlDnoRn5Hm4HEWqypPue06ddLcQorN1QZ+ +vX/GldDESM+65/z7V8VNantLRtEQOTuDdegJ7CpEIDkFe+Bhe3+RS36DtZWJraJSdpT6YPvXJ/GT +4gW/w/8ACkk8M6/bJQVRRyd341phqP1mtCiurX5k1Z+yg5y2Wp8US6zBql5dahq1s95cTNv3NIUC +sc5HAyfbngioreHfP5ywsE67XbOOema/UeVU4KMdkfCJzq1ZVJPc0C8pIOwBUwMdACOnHvVC6vY3 +kWKJj7A5/Lis4asuastC5DGunWbXBdN5xlTw2enH04qoYklPnSFSSOAAOD2PNODbbkZyXLaKN/Q4 +DIEhJKFeSuQNxHU/jj9K9T8GeB7rXrmIGE/Zg25c5HOef5CivUVGk5szpq9Q+h/D+kW+h2sdskYT +CgE9sVctLOTV9RedSVtkOMEcMfX6V8HiKnNOU5HrQtCN0fMszTXl40k5JIUbSBnA4qZFZUKCMEjJ +BzXotKKUV0PeUue8n1IZ0DTLsGeM56g9jXqvw+LmNEUhRkEjJ4/z/WuDMV+6sdFCWrPZNHy0SYwO ++D2FavzFSqgAAc5wMV8xGLbOWs0pGbqmVibDHK9OMd68f8dF1jcpIdyZKsDgg8ng114P+KkdlBJw +dzwy5MkOpyRxt5bFu3XGe9dFZShozuxjP4f5z/nvX19R6JM44xTbaNEEEqSpYgYIAzjpx19utKqs +pVgSMjk46Hr+Fcrt0NVdKzJ0YKoLbdxB+XuOOefyq9aKMb0G3g8AY/OsJtLc1irvQ1oHdYSFVQWO +Sc/5/wAmpkXZg4AyehGAP88flXM7XNk7Mv2MC3M+CCsUeWdweAo7/wCfWsnWNSD3k7w4ECfu1Oew +NFNtzsugpqL3IcCSFJYyFKMeASFBPU/yoiZ0cF1YnAB288Z9K3TbMWktET70mdR5jlRuLgNjnGAf +fB/CrEccTbTDCWLKcZUEnJ4+uPXpj1qou2xjNXVn0NWGy+zwGS5MbEpjluOmfm7sc9v6YrQt7K4m +fe0UgLAbieHfnkEn7oxik7Pfb+v69PU5p33/AK/r9bLoXpIFEhljQZiQDO75Iz6jsT29vap45fKM +YSZmO0yMrcs5J6t6D0H+Tm1zaf1/XUi39f1/VypPfFnE5CkuQpdlLADONqD196u28/kgu8aR7T5p +ZiQq45y3qfx7U/soiS5b/wCf9ehvad4gjhgSHTIpL7Ubk4QBQH5wB1+6D712nhb4dTlzrvii5+2X +rEMlu3McfPf+8fc1rSXs26j32Xl5/L8z53Mq/sYtL4pfgv8Ag/10PQrOdIIRGU8qBWKAjrGf7p/p +VqC9tVQrOwY5OGyMMPWmpWfn/X5PT0PmpQcm2v6/4fcRZ5JH2lztU/I4ONv/ANaq6KzMo3NNJvZJ +AOADjhhWllsv6/rVEd3/AF/VzQUzTT7Y0WGRCGKnktgEZpUt5CCJJ5MscnBwCKLKXxaszvy6IsQR +RxACQAtjhs9aspJHGu7IVQeeelU5JLVmDjzMs3lpo2sWTaZrllBd2svytHKm4c18nftJfso2djZy +eOfh2hhsraN3u7KJQSMAnK+3rWtKvyvke36/8E7sqxUsFioyb92Ts+3r8j5F03VtyGCVvm/iB5x7 +c/jXqHgWYu6hF7AYOOtLGQ5YNI/VcLJNq57ToWCilGB5xgd61WICsCNwwMgfrXzM1rodEm+YYyRt +GzSsVC56c4PP6cfrXlnxIcvYzIBjcDxj06V04a3Ou4o3tLsfIviNXt9aupoyCokJZcnlc8A46j2z +2rpfhz4zu7S6jtZZAsUjAogG1UPHT29q+8xEPa4RR8j5yjanjZSPqHwf4gW9hWVHBIAVgDyD1rtX +2SxhlAwR3wa/P8XDklY+qT2ZSYqH2kYGOuM81ahUsOTx0BPp7VjFuxVla5Yvb620XTZr+7kCJGjO +WYgfrXxB8YfiReeO/E8ssMsn2OAskIVuDzjJFfQcN4b2mJlWktI/mzys3qqnhuVbs4Wztmzu2cZI +xnGeeD79DXQoYoFVMbCoyMcsfcj16dP519pVlrY+ZhG+pUvSiRsGbBcEgk5JNN0y0Ak+1XCoCoIw +SACB25NTtEd7tX2GTGS+kaZeViICgHrz6/4VcVlDbg4+8BnZkkdOK0SWkTGbu3I7rwF4Vv8AxRqM +MkUblEILOwA4yOmPpX1H4e0S20O0ito4x5igKSBgV4uc17WpI2w0FubqW/8AadzHBDny4yC7D+Vd +NBaw2cYWNNoXg818niG9Im03rZHyBBF5UmGZsEAAE4HXNSh2DYUAnJBGSvP19eteu3zH0XQheQJI +GCElBuAwcDpXqvw/dWijEbAd85xjrXHmGtA2oaSuj1/SgBEgDBhjGOvOf/1VpFnUMS25cfT/AD/9 +avmLpOxlUu56lO/jY2xcsTjIzz1ryD4goWhcHpg52njn8a68FG1VXOmhL3Wjwy6Ik1Nxv/i3FiMZ ++vpW3ZygpsAJK8sD1/z0r6+svdRxw1eqNKJQjK4YZzg8YOOasOrSksAQQRgAd8f5Fcb1Oi9giVhw +QTzkYHTrx9P8a0reJlXDqApG0k9DWNRPc0jbZGnGUQkK4I3cL0Hf+lE90yoI3kQMW6L29uKws5NW +NG0tGd/qekR+GPg3Fqt1Aq3uuXHmoxGX8scIvsCctx6CvIoVE0Rlkbc56c7m3DoPp+lY4ObqSnLz +t9xjSnGdOU31b/B2NS1cQqEjduSWYHpnGcfWpY2LjzQxwQCdh9AOK6ZKzNFrqyytpcuyGYlemNwy +f069/atCCACLfEw80AAs7YAyOrHuR6D+tO6asjCa6/1/X/D9DcsY5Jl3xowlAAErqOBn+EY+WtC5 +vIrSP7JAGklHzOoYBQe25vf0FTJ3aj/X9fqckl1X9drfp95HYyOuJJpFZlOJJAAqA4ziMfxH396W +8uI40kDRf605xuwV7Zdu3Y4p3aun/X9bslRvqv6/4bb1MS+1YW7Ir3DLG4xuQDc/IGFHYe9b3hvQ +NW8Wjztz2mmbgomdOCeMAA/ePXnpW6ire0a0X9f15nNiavsIcz36LzPadD8G6dpGnI2nWvlSqf8A +SZX5kJx1yex610lvqEcCmF9zyA7GI5J4GH/LrXPKcpSU2tf6/wCG+Z8dWbr3u7+f9fIWSRkBnkaM +OR8wdsI49veoYZGnizZxmaOXO1peFQ4PHvzWkH2fn/XqvyZytaXe39W/y+4u2tvIdqXk/mSRjlBw +D+Fa8Rikh2oPkxg47cdD71qtHynNUlfVbDx8+YmkzPEu+JxwW/z3pUlMkKszbWIBKgfdbuKaVkrf +12/Axk7/ANf11HPNAdm4jKtk7j3z0/z60pnZ1ASHcpGVIHB/OnFNu5m9Erl6ymaaNBKqZHG7OTnN +acFvHcwG3IQxlWR42GVOfXPtRKPNGxhN2Z+b/wC1V8EJ/hV471LxRYWht9C1W4ElrsjJVXbG5SRw +vOTisL4c3zzSqqjcerAdOK6MW3Vw/OfqmQYqOKw8Kl9ba+q0Pd9BbEKg+mTitxcE5J6AdeK+Ulfm +1Pdno9CKYFY2Ax3B+mf8/nXmPxBKm0m3JnggZGe1duH/AIiQou8ZHyT4vhP9szOydXPQYHXiufDt +aTLLEABnOQeB+n+fzr9CpJSpJPsfLVLxrtrue3fCr4hxgJaXE+CBgj37Hk/WvozwpqM+uKsen28l +yeMiFC2Bx6dK+KzTCTVZqK3PpaeKprD885WS6mxqmg63pqC6vtIubeBnADvEVBPpn8afaQSrCkzx +MIi5VWIwD9D+FePOlVoO1RNdTWjjKGKpqdGakr20fWx4F+0p8UhFEfBui3Tb5FIuNhGVX/E/0r5q +RHLK4GCy8HP59q+9yHDfV8GpPeWv+R83m9Z1K6prp+Zp21qYkeUpuRMH7uMjpnH+eanVg0QYx7ud +wL84H4H1/ma9J6yucK+BFaVXupyHZlUcAkjOB/gAO/anXeJStsgHyhc7V9cc+/QVppdLsY3aV0KY +YrS1DbijfeUjt0PX61e8Jabc+LtcFnChfzHwxVeRz1I7D296qErXm+hM1qon2N8PPBNn4Q0aJZFB +k2DPy8k5rbC3GpXvkW7rsP327D2FfHYqt7WrKo9j0IR5YnWaXZRWMQEcYDDrkdavGVWB38dx7814 +tSTlJsyabdz4/d24RlClQR2x6847UwSyM+BIQuTng8V7zVj6GN5K5WuAwdQZC+BuyB3x09+mK9V+ +G8x8hSAMEDJIz26VxY93onXRTvax7TpAzGpBxkA+1aDHcCQ3B6flXy9lzGFRvmZV1B3FoxxjOMHG +Mc15D4+eNYZGaIEFSAf8+1deCf75JHRQS5G0zwSe4VtUkVEwoyA2cZz9fr/KtuxuCqDCgseDjv3/ +AC4r7Csm0jlp6NmlAWT5thJGOSenPSpzduqFSFCE7sDt/n+lcdkmbybexatJmRwAqOeTkjGTzxxV +2GYj52BUk5YjoairdqyCG7uXYpyIlVCcEEHjv7f571o+B9CufGfjXSfDVsjgXd2iSNjIVOSx/AZr +mvyXl2TZpWqKnSlN9Fc9P/ag1CMTWmhafEotrBViQYIAVQMBf89vrXhkb+ayeWcgAfMvQ/l171hl +bf1RSfVs58HTccPTT7GlaxoWAkcB1JwR0b1Huc1IIp3TdF+7K4wuOMcHn1Oe1dDtezOxdWi/EJPK +jVlaQOAW5GST/ePbr90Vt28UQQFj8oYY+UYHPQCh6JNO39f1+ZhJuW/9f1+RoyEwssazFlkUFlRg +D0zkntj+lMkntppVh0+JZEU7mYt+7BHr/eNS290/6/rY5XHXX+r/AK/khZ76PTY1eXzZ5t25Y1XL +dB0x0Fc22t3moXrWe0zzzHEdvFGSoJOcMR949K1oRlN6fL/P+upnJRim3bz6WX9f5ne+Dfhcb+9G +o+JizzsitDbqcqBjI3fTjivZtKhtbPTGF95Ye2YRNGqgLjGQcDpx/SnXq6qMdl/Vz5nMKzrysvK3 +psNGq3SSLGgJiJ2ls/eT+6309asPdWrr5GlES3KnCMDlI2zjDHvxWFOP2X/Xn935HnVY9Y7df8v0 +QyOzcHzNVuVnbdu2AYjjbPQj0PrXQQS4gCuB5Z7elbRdtFt/X9fJdzlr2eqX/AHuySP5TE5I3RyE +4OfT61PBeFTlFB25DA8Z960V3ov67f5HJKOln/XcfLfRJMjK5kc/wqMlf8O1SwNc3CsS4i424HJY +e/pWujV+hztOO4420SgzwqWl4WQMcnj0q3bzhkwB8uMFf60ld2M5rTUfETE7uHHlkfKR1FX7K7WJ +w5AbjseCKrRGMveTOP8A2jvAMfxO+EGveH4oBJctbGazYKCVmT5lxnpyMV+cnwvmls70WV3G8c0L +lJAeCGBwQc9OlXr9WnF9z7Tg6snGVHqnf7/+GPo/QHU2/wAvGRgjB9K20QBM5yBjIIr5eo7SufeS +3aHMxRQd5wck575ry/4huiQSoW27j94dRyf/AKwrqwr99XI+zKx8keMJEOqzDJ27iRjp79a5q4uQ +xZIgc4OCOo46V+j0FzU4o+SxM1Ccmz6T/ZZ/ZK8X/E/VrfxP4gjuNK8No4cSMuyW5UdkHYf7R49M +1+hvh3Q/BvgSyj8PeEdFheS3ABWMDC4HV27n3PNeDm1dOt7Glv1PmMXjqmKvS5vcjv6/1p6/I300 +G/16ER61HHJA/JhIwv055P6VV8Z/DPT9e8NzaUtisUnluLaaA4MLEHBxXlzglHkdmut+vc4aGPnh +akalJtcruu39NaH40+NLbWbLxhrWl+Iwft9jezW028/MHRiv4dM1VtUeZ0iULhRlhyN2ccnnvX3P +JGnTSjtZH1Cr/WZuo+upoFY3nMSOVDDJ3L045yKaZzArW+2EjOA6e/p3IxzyO9YxOiTbVmROUEQA +ba+Aq4GCefTvzS2MKITJLIUJbJGCT36/p+ead9LkeRSc3VzqK2kYDbm2BUBBP+HOfyNfVnwO+F1p +oWnR6vdWhSWQK53DketcuYVvYYdpbsunHnndnql47XLLbQjOCAuB2roNG0iKziDEAMRuJPfj/wCt +XxtWXs6djsqysrItswAAAwPT3qINhtyjAzk444/ziuJ6LUhHyYIFV9pZsDB4/Uc9O3NTxx5bLngE +jJxx6dq9ycrM+ihG+5DeQsfmMZKkhR3A5616N8P2YRRoQQAAS2eB7VxY1v2LOqlFXPatDUugQFeD +xzWwyKRwBx15/wA5r5dy1sctV2m0Z2pKY4sHHPQY61438Qw32eZUC5IPIHOMdvauzBO9VWOqhZQb +Z4FPGrXrssmDnGwjofSt/Rkfy/3qjkHIHGD6fpX2VV3icUb3dzcijKRjc4J28cHr0qUx7kXjv0zn +n/PFee5WdzrSvoPRW3qwJ68885q7AjSDKYHXjOOazlK6sWoqLv0NJUjkQI8gUdCcjJ9eeleu/sp6 +Gk/izWPE9wxH9l2ZVCvQvIcY/INXHipcuEqS8jizSTWHqJLdW+/Q5/8AaF1eQ6wLZj+7Eh2rgfNz +knPf0x26eteU2bkCNtwY5yEBGMc+1XliSwcbHRBKFOCXY1rWSG333l5IMFCpYkDb9fTt71NYTNNA +lwqyZaTEQAwzrnn/AHR/jWzTlqbtqN/P+v67m3YWRjdJLmZFIO6NV+4pyPX7xFPutRVCYoG8jc2c +kZkk542jt3pWVSVun5/8P+COdtx3/r/huosdje30QmvJZLfT1IZog3Le7t+XA9Kuf2jDHbg2cUcV +vFyJNu0f8BHelUf2Y7dfN/1sZRje8v6/rv2RhfadW1m5OnaPbFpZ22sA53YHdiOgHp3r17wL8OrP +QoEu0YS3zgM8xHQd1X0Fa/w6dnu/y/r9Tz8yrqlHkXz/AK8/0O1m1a3spNliAX2fMQOd3eqdsLm3 +l+0zXPlxS5wp5eQ9lC9wf0rFLm95/wBf1/w54PLyQaau3/X3eZpojXTCK5gNjbSKA0SNl345yR79 +h1qWOOS0kSDTIRtJ2sEGAy9jnsRVPmk+Vb/1+Bxu0VZv3e/d9/8AL0NyOFPLEkbq0ki5jY8B8dj7 +01btAvkDdEORgnlW/qK0itrbf1/XyOBpybT6E8uo2sa+VdHEpUMUUZ3D+8uKdBbX97EZpGECsPk5 ++Zlxxn0NarXf/h/639GZSjyK7+X9f1qjQtRDbLmCLDZ+bPJJ96mtL2Od2VeJFOdp4/Cnzt2uv6/r +8jCVO92KDKzF1YrICTx0qSJZvN81uCeGGPbqKajfW5hNpaFtwFcB5VUEZIJ7+lEbQR5EbljjII5x +Wq5fU53fpojZsdQje3NtcfMGXPI4P/66+JP2kvhEnw9+JMHjTQrfbpWvTHzVjBxHPjknHYjJ+uab +a5ZR7r8j2eGK31bMoxe0tP1Rq+E5g8MYcqY+rKBz/wDWrp0VAWIOMHOSPr+dfLVmtD9Sn8bsQ3O2 +KNnD4XOM7cjpXkfxNvUjhkRnVX/6aNgD+n/6q6cHZzViX8MmfIGpnU/EPiFrLTbeS6uLmbbGkUeW +Yk4AAA/zmvtX9mj9iG20+3tfiF8Z4F+UCWDTZj8qgDgy56n/AGe3f0r9CxOIjgcKpPe2h+cZtin7 +WUIbt6H1ZbarfeIFXQfA8S2GkQOIZbtV25UD7sY/r2rstL0jTfD1qILWIZ6sxOSzd2J6k+9fK6xX +PL4pfkeNWShahHpv6/8AALjasY4izyYAPTrmtbRNSN3w6lVcYwxqGm4s5pQXKfk7+3V4dt/Df7Rm +vyWwWManDBqBUHADspU/mUJ/GvDrPaNuQ2d2c52/0r7ehJ1MLCT7I+my7WlF+S/IvSSgQFs7QH5Y +EZIBPA/Q5x/WqYdF/fOhPHAYkYOB3/PpUryPU3GwyG4Bmk2RjdhFBIx1z/I/rV+Z0iTJl6DggAD8 +/Q81bV5JEaq8mepfAX4dvr+prqtxbsYUIIJzhyDweP8AP619TyRR6fbLZW6gBMYwuPy/lXzuc1ue +qqa6HXh4KKuW9H0/ZH9pmG5z82TWuJlBCjOO/wDnNfO1580tC+Xm1Gs4HcAdxjnNMILHgHPUVi27 +Epa6ny4kBGAvJ9Af8+tTCJTGEAzyMDHbn8+pr1XJ7I+mjFbshlLKNqqRuAIHQntn/PvXd+ASCqgk +kAgkDoT1/wAiuPGS/dPmOqlHW8T2jRAFjVXHbr3ra3ZDEgDjvzXzklyu551bWbKmoxfuCxIY1438 +SEQIxCkgL3AziunA6VF/X9dDqw9uVpngs8ateSKV4H3h6/hit3T1QR8PypwwycD3r7GpJ8qMFGza +RrxpHvHIHGCe2eanSIOpDMMAZGOmMd/xxXDKTOqO3MxYHEcpUk4zjB/nWjFEQdpOSSCe351lJ9y9 +Ca5AFsxLBhjkEcYz19q+k/2X9J/s74Y6vrUqMn9pXzqWx/yziXqD3OWP4152Yu2Dk/NHmZw+XD27 +tL8b/oeG/F7VX1jUpHbLJbNtWPk+XyMjp/nHqeOFtLtnYtGnJAUKvXP9Tz+FduAi44aKO6SjBKJe +s7BHuFudUlOzrHCQCu7rk/3j/jW1aXkC3K2ygSOVw0RbAj56se1bVJc1lEpx5E5S/r/gllbmS6uP +KtFWXyshpm4WM+ijHJ/zxViC1AlE6hk3MN5Ybnb2Geg4pRbhH+vu/wAyJx5nf+v+GX4svPqGn72t +Qi3AUHAD4RTzgn1rIkm1LxLqK6PocZEEZxNcYBRB6j8qIQ5nd6Jas55NU7uTv/X9XPUvDGgaZ4Rt +t8ZE0MoDXEjj5yc9R/hWzLrcomjs9OPm2rj5GUYYnPf0rBt1ZX/r0PGqxdVuc9v1/wCGLatE80cW +nBLy/RgWmHMMY684PzHr0rZ08RwXDS3zmWdzlpsZ2H0Ht9PTNbPSzX9efr/XdHmVE3Gz3/Jdv8zS +NvJeFYpZPKyAYyG+/wB+KdZ30SBrUI0IByD/ABbgcbv8RRy/1/X4Hny9+6WyHtKUdlAOC28gNwf9 +pT2PGaqT6vPftJaaavmkcPOR8mcdf98d8VotdL/1/WvzZnGmm+Z7L+v69PM0NKgjghkdJ3muAoJa +UZZWxzj2rUsL8gPFIh3DHy57nuP8KSbeq27f1/WphWipSlfctSOrN9qSXaQMHaMj8RUjxEssrDY+ +PlYfy+la2T1OSTta4t5eQWlk13eTJA0YbJJwMjt+lZGja/qmuqokH2K1jbClgRLIOx9u9CvfV+oo +0k6bqPpt5/8ADdTeghAn8wnflcAsckVOszDa6rgKeR0BrVKystjjkk3djlv0RgoPzHjPTFGvaFoP +jbR30XXrOO4gkGCGAyjdmB7GtYPr/X9dDJ81KSqQdmndPseBeKfh7P8ADzWhbW8jT6bc5NvKfvD/ +AGT74qusjRriQYBXHJ6V8hjo8ldxW3T5n7Fl2LWYYSniHu1r6rR/iUNUvY44ssTjHT26V5zcfCfx +58XNUOneHLForVjtmu5l/dIOnGepx6V6GUQ56vPLZasnMMXDAYaVWo/TzPe/hP8As4fDD4GRR3os +U1nxFjMt3MA3lt6jP3R1/wDr16Umn6p4tlEmtv5WnLjECggP9favcr4h42r7SXwx2PyuVVuTrz+J +7eR0kQstLt0tbOFYkX5cKMfyqtdXrvuiQnk9O9c7bnJyZjFCWVv8yISwUHuc5NdTpoEI3YGVGc4p +y+Fsmpq7M/LD9v2/h1L9pDVBHLkWNjaW0u0Z2sVZ8HHs4rwq0ljiIUrkOACAO3TtivsMJf6nTXkf +R4CL9jFeS/JCXtqXeWQ4K7iQQ2Qffr9cfX2qrHE8rxxLIjKDggjJx6e9Wr3PSUk46FwJFDEZRJtI +BfIXv/n/ADxUfhHTNS8X+J4dOtkLIz84BIA9faqptXc30FNN2ij7s8AeFrbwf4at7OGNd4jBZvU/ +0rdsLZr25E0gOwE4zjr+FfF4mo5zlUbPQ0UdDcbYkYAGO/XtULyAEhjgkZPNeVq2StrDWYHK4Iyc +HvmmLIyMQWBB4BHYU9+gJWR81k7SGdcnjGDjnPv1/wDrU0sGJK557AD+X4frXouzeh9JFNRuNkX9 +8UZeCy45PPtXoHgiONcAE8jHPfIrhx8v3dkdmHWjb7Hr2jROoDZOzHbgGt+GIiPLgjPUmvnqmjaP +LrtORDqFvi1chCCR1PavF/iQTHFK+7oCMYrpwelWzR04RtpngEiH7e42ZzIVJ9s9xW/ZpsCn+I5J +JHHGMHH519lO/KjK/vWRrK7eYFk57ZA5/wDr9qduG5XDYC5PHIPHWuGXkdEdhseGkEiYJJ6gHpx/ +hWhbFigYnJIyckZzjFZTVtUaXv7rINTvALfJYjccbeoAPevr7wXp9z4Y/Z80OxhZ457q3a7YOcf6 +193B7fLgj3rzs1ssNGMusvyPJzRpulB/zr8mfOfjO0iiS5cKcryzEcsPU/T0PPUmuOhgEBxCFJ6o +o649M/zNd+ClzUUj1J35uYR/tgmVZJTEVJHmdVUH+FB/e960rSd7a3Cw2WZZOcb+uP4nb9fyreUV +ZJf1/W4OV27r+v60Ni1dre3Et4yOM/eQ4UH+6o7mpTcX14cw+Zb223BJ+849vQVnZSd3sS3ZW6/h +/SF03R7zxDcGwtsRRRjMkij5VHp7k8/nXf6DZWnhuBI7dAIj8ys68se4b2NFeThHlXXc8+tacnBf +1/X6lua7e58+RpPKskOZCxwI+cZP61FYySX88lvpLmDSnwsssi/NcEHqh/hFTBaXf9f1+Rw1Ercv +Rfnp/wAOdVpEaaYqQWUY+y7cuxPMfv8ASt2S5itkDW5WdiQwc8o4Pp6/5701u2zycTeUku+/9fiV +I5by4YpCTIqEsVLZYAHqv+HtWqLjTRZJdPcgOFPl3BwMkdVYdjVu0d/6/rdfM5asHpGC16/15r8T +Ms7y515HjkBt7FWLAgfOT3x6KSa0LOdLBfIsoAkZ+Up0D9sg9jSd7Wfz9f6/AVWnGLdNPT82W5Lq +OEme2kIBADHHzIf9of5FOS+nSRbeUCKdlDJMq/K5xwKSvu9v6/FP8Pkczprd7/n5f5F60ulEEjai +PJ8viQjoff8AWpYPFun7JLeCOS4aE7AVX5fXr0rWNRxdktfwOWWGda7i/dXUy7qA6s0V54im2BHJ +ghUjavBIyP4m4NaVvex5Xy4GdQuFyuMEGnFtu0en3EVVePLtFbGrHcyPJ5aqVwucH+lNfUCjeS5y +wH0BHt71rqldnEoKTshPtUUy/MNpxkgj/P8AkVFFqzwll3HdGcnHcf5/rWiezM5Q3RU8cwJ4j8KT +Rwwb7m3K3ESnqCMZH5Z/OvH7SzvNalW1023aaZhgKBz+PpXg5lhp1cRFQ6/8P+p91wvioUsDUVV6 +Qd/k1/wGd/4a+FdhbNHqHjGeOZ87ktlyVz6Y78/h9a7ObULiOMabo9ktnABjyYcByAMDJHCj9fau +yEOSCoU/m+/9fgeBmePeZV/aS0hH4V+r/ryLVjoEcJW61J98hO5YgTtU46+pPuefpWhLfgDy4UwB +kDHSuuytyLY8SbdSXMytvlkfJOG7H0+lPEao2QTkjJJoH6GlYtFtAjA649ga3IlEaZyBxk80qjfI +znloz8cf2gte/wCEu+OvjPXjOfKl1iaNGPJKRHyxwT6JXFSRbgrhsHIAOOg9/XnvX28I8lCC7Jfk +fUYVcqt2K91OI42jdGPLDJzx6d/WmWsMhkSRhsznjJJx3z6VHRs9BbJGjHp818oijkwrDGOQOnoe +vevoP9nv4Y2mmRf25dWw8zgZI7VyY2r7HDtLqdNGClLnPfJ5TORBETxwCPT1Na9lCLaJQRgkYwP8 +K+Mqt8tjoqJKy6j5BhSAeAevHB5qIruONwHUnNcz02M1toRuwLHI5BwCoqNjgkAZ6ED8etVa44nz +exKSiNsMeMY/lUckhLn5do5ADAcjGfr1Nei4n0iemg7dG7k78jdnB6//AFq73wUyh40RTkkAYrz8 +ZH3Dqpy5Y2PZtCUSRqMngA4yOOneuhijUISeOMjBr5ubfMeVXfvNFfUCRbkKMfKcZrxL4kMGR1Cg +jDN+PbiuvBNuomzrwa0b9T58uHP9oOFZs5zwO/NdBaM8oRpJHYooC5bt6Z/Cvsql+VGcUlJtmlCx +UIJRxgHIA6f5/lSkkgbDxjOewFcjszotyt9gjJx5SnBx3PUdvwq7BuaJpHxnpjOP881E2tikt2VL +iNry9tLclv30qgEHJ5OK++vF9jBYeH9O0K3dEjtLaJBvPyqqIPmPsCBx34rxs8ly0qSfc8bNW/b0 +VHX4n91j5j8Yac92WliILSuzvlA2BjIP1OeB9a88n0iS0CsUWWR1yiqfuAk/KfeurBVkoKPf+v6+ +R7LjeBWt2dJvMkcdQEJGQM9h64q9C1hGsdmxIkkBdUjbLHnkn2r0JuV7JXHFK127GutvDNKkkkqu +IxgrswiH/HpTyl5q98NM08qlszZmlx9xSfX1xUwSlvsv6/EynPkTfU7qxsLLRLGKO1jZYo1+cA/M +4yTv96dcTpe2L3lw5hs4AGJHck4AHrk1jNubckedez53v+pTiS/1pFFxD5OnwvhI0+/L6b8feAx+ +tdDaTfZYGndCttGP3seONvHK+9aNfZ/q5z1eVRsv6uaC6klw62lkoaynP7v5iC2ezHtj0+lbVjp8 +tmgaRCVHzCEnGe/y+hpxs7s8yv8Au42lu/z6/wBdiXUNXsY0E+nysLqN8GIfeYf3SO/1qvbacst4 +1xrcYgWb94kIbEYYD+L3P6VMmkua39f8A54QlThr8T281v8A8MabyGWTy1byygBSRflyPcelSPM7 +D7JOgSV+ARwrj29KlO2i/rzMXC1v6/ryIppZYZBLGMiMAEHqw/un1rQsLyzTJuIi6ghhCfvxn/Z9 +q1heLv8A1/VtPuMa0OeF09f61/roWZnmv4WZl2wSABhGOW+tRRvFaQfuj+7VwvllOn+FU3LZf18v +6+85bL4f+HLyw2uomN3iVXzuUnnBHpVmOfKPFIAGxyD/ADrdbJo4J3vyPoVrvVtiAiXay4AlYfKc +fyNVbe9a7mLuCjgZwTkfWktZXf8AX9f10N1S5KfMv6/4Ykn1ARSfvGxtG8c53J3rNuNdW2vVWIiR +iOVA6qf8K0Td7f1/WxkqPOdDp0V1FEL65K29vn78pxlSPSptFk02wlmh0HThGzlne6aPCEn0z1rl +r1HOXLT/AOG/4IoX5JK9ou1/O3QvW2jvezNcyyOGdcNIWwWHcD0H0q/I9tpqJBbgZJwMDkmlGKgr +LcxlUc3y30Ee4dzyfqPaoY2Z3G0nbg9K11WiMkupahyqgKM5z2rKv9Xt47xdPSUb84Yj144onK2h +dKm6jdjoLCRBEiow44J96d4+8XWPgvwNrnii9cLFpmnzXJJ6fKhIH4nApTbaUV1aMHTc5KPfQ/E1 +9SvNR1K81GeRvOurh5pTknc7MWP157Vdt5JWkGQ8ihSY92c555BGMYzX3VT3fdXQ+spRXLd9Stdu +80hUqYiRliSSMY4H5/561ajiiWJLmU4XI4PTnv045/Ss3o1c2g9Lo9F+FHhtPFV/EIrWMRblYjJ9 +uox3/pX1rpWnW+h6VFaQRhdqYwoArw86q2apo78LHS5p6XbCQmZ1JJ5561rsABsC8j2PavmqzvJJ +hN+8ROAUzj5exB4zUYViM7c5HY8n/Co3RIwx4BYDPOcikEZwzMCeBg5+lLbUe58yoAGVfLIdiACR +jvTVkDhScnGBnAAwPp+Nelurn0eieopPmEKqn7pJHbGf8K7/AMBorSKUOcHbk8//AKq4Mam6TOin +p1PbNBhKxKjHBAweetboZSDlj0FfMNe87nm1372hV1CQG3JBO7BwDya8X+IxEdtKFAxgj9D/APXr +twaXtkmdeFuoSPn+faL4swYAk5y3St+1QCLMZOOcDGcYzxX2NVXijOLu/I0FVYkAkUg54BHBz2oU +FSVOduQRnrXG00dKlzMRAWwgOMZHJ4q0khGJCuAo5yTwPWodyulg0oh/FGjIVRt19CNrHAPzjg19 +5/Eab99OgVVEMYZm6hMY+c/TsO5z6V4efXUaX9dzxMxSliqS8pfnE8K13T7JXilgjuAgwrJIMhUI +yZWPZiTgA1wOuaRItt9ltAf3DHBK7XVN3U+5yaWGqPRPRf1+B7eHu4+8035f1br+Jwd9cHT7tYYF +37GYySN9yJTwfrWlpf2WUpdqVES4JkGMzHH8q967UFJLcJq7tf8Ar/gFyG11LW9WaOzlMVsjbpmH +KDJ7k9T1ru4bSw0m0SCzhzEoBkAOWds/e/nUVJcsVBbvc5qms7LZFm7u4I7KXUr6UxQwqDGoGC8n +90AdjmsmzS68UXEdzfJ9nsosGC0J+UN0I984zzSS5U5N7bev9focfxS06f0zqlMdoqeY2IGGAADk +U24jl1dBDG5SONzvBOCMH71TBJ6mMnafM9kSQ3MOnNHLpyG6VjmYFcoV9j/WtqTXboImmW7LcByP +IlJx5PP3XP8ASratq9v6v/n8jkrUvbSUpf1b/NaGrpmmw6cz6n5plupB85cAEH2/z3qaa7F8TC6B +eD8ncmol7zujiknOXO+n5CRXD2UIiuEL24+64PzIOnfqKmvNRBhXMfmxE/JKCPlOOhpL3Wkv68iH +Dnkpf1f/AIJWS6vFm3XGLmMANtUYYDHY9/pTDfWliUdpzNucFYxy6jPr6f8A6qer0X9f8D+ugnBX +aj/w39djQhvr26QMrLEFzlUJ3OM459OK0bS8giKxykqjjadx5X6n35rVLldupw1ad1yxX9f1/Vyz +5o02TcOY2OcE8p/9brVe91A3A3FsADcpB61rtockYKc1UG2V3FdxmNssRkSREDOP896ydQ1KLTpi +sOQyDzYs9wPvx/TBBFVK9rL+v63+RtCmvaOD/r+kWYbbVPEcsUmnoI7dTzcOMLtPB+vFbuk6bo2i +xINMhOo3ago11KMon0FY1K3L7kN3+Bz1dvZrZb/5Gouiy6pL51/K0xVgwZiAiH2H+fwrWiFtakhs +MwHJxgelCSpq3X+vxOKc3U91bIibVyzFUUjBwO3vSRnfIZG3E45NXFNasycbaIlwS6qQQMZGR2qe +CME8DgnGQKsh7Gf4l1uPQdNkuS4ErZSIHu2Mk/hXmOmT39/ftfBykKsZXlkO1VUdTn0xXPNpt32P +Zy+mo0ZVZLfRHUeGfiDFr18bTTEP2O2YKJmHMpzy30J6V5J+398U38P/AAusfAtjc7L7xVMGcBsF +bWEqzf8AfTbR78104KEq2Kpwfe/yRnPCKhiIwe+79bX/ADPzxtLGOe3WeNt7O+0oBk7iT2684+v6 +VYDi0CSBwjICdm3PI+vvX2s37x6kG2uUrmSaWSa6kGT1LE5LHPWtrRdIvNfR4Gyo5x8u7nt0+g/K +lGzk2zS1oqKPqn4G+Ak8KaJHPcRfvHAY5Ga9NjU3t2CASF5/D0r5DH1fbYmUux6lOKp07m7CqKgX +aQAeeaVnDMVQn5Twf8/0ryJXcrmMV1GyMdgK4BxyD/Oo8lc7T0+VcjvSa6IV+gKvOWI9AD1pgLFW +QemMDrUavQa3Pl+RQ0StsfcGIbnrkcHFQrtZNyAbsHBzx9BXq2a0Po99SSFmZwF3Z5Gc9h3zn/Gv +SvAkbxIh2FcY7Z5rix7UaTudVGNz2bRRiNQG6jqTzWx8gGQpwTjkfrXzHVo8utrN2IL5QYGG3BA6 +Hvn/APXXjfxJQG1ZgvPIwDmurBa1kzrwrtBnz5cKh1KRN4PO4YGDwcYFb9kFwEyMhSMls9v/AK9f +aVfhREd2i9u2gA9OnPPHX1+tIAQclgoB4BPA/wDrVxPujoS0sLEYmBbfyOmB1OKkaTeH8tgoxzxg +4x6/lWbSuUrpGl8MrQ6z8VfC2mtuIl1WDKquTtDgn+Vfbni9Jr7UJ3iVAHYvGGbA4P33Ptjge35e +BxDK06S8v1f/AA/yPFxzUcTFvon+L/4GnmeVaxDcmd7BZSYZZRKoc4WdgMM7n+EDAIH09q4i+guZ +La8geNVDK0kfmNhm5BMhP93HAH/1qxwzjFaf1/W3y8z18PJNaL7vx/rtY8z1TR1jKNMfMRxnaWxu +O4jP061LpNi+tyPBBI8NtEhMsy8henyrj8elfSwkpwTtov6/4BpP3G29z0a0trHR9Oi06xVfKVQA +QMl/cnuaqzXkWnE3OoZ8t8tBEq5d2xjbj0JrNJ1JXfU4W+SL7u/9MpWNpd+Ip47m9m2iJWJjP+rj +Ukfu19eg5rqFiS3gM0SLG0AwqjjeB/n9KdVrSC6GdnDQgvdQjVRcXrD97HtSHPLtycgduB1+lW7F +b66iR3kxFE7SJGRlnTaV2se/Un8fpRFaXf8AX9f1uc9VLlt0RbF+btv7O0+FliUDMwGRGCf1P+Na +tpDBpNq8CATW8mHkDjLD3z3+v8qG38zGceVci67+TJEmnMX2xZpJLRWK5HLIev4irF7r1qlsrMMT +IDIsqqdrr0/D6f41pGlKo+Wmt/6/D8jlnG9ttNySGeW6G8yoyMAwRWwCT/nFE15baUMQyGXzWAlt +1w2RyMn0xms6lOVOfsluZrlkrR2/rUhtX1G4u5I7l/sNoxAjjJyxHox7Z74q1bQ2sUrxQBY1LMWR +xuyT1AbuMmmmoXjH+v8AgGc1zvTa33+ZZguXSQLJtWQMAjAfK5/un8OKfNOss3mRHehTYVxgkA/d ++oxVLdW3/r+vkZuCTv0/r8tQbXJnjER/eRrkh8fMg9D6EU038NtKvlsDFLwOfu+/6VpFNL+v68jC +VFR91dfzKdte6jNdmx0qDzp4wQhI4KEdCe2D/Ouht/D+n2bLe+IB9qutwYWyNlUOCMse3Xv6Uq1Z +0FZb2/r8DCrZO0X7z/A3Le01HVBG0x8qzQblhiXbGM8Y9W4/Ctm2g0vTtssjIzqAD2H09q5YSdJX +lq/6/r/gnm1/e/d09h0msx3IYW+MDuBxUIV52E0uSwBIyeAK6IarmZzcrhoSw2xd955wPSryQlFJ +AHryec1pHVGUn0HxxkkAMSTx/SrscSxRZkOAvPPGKptJGTbvY8e8Ua0virxEyxSn+zrEMiuThMD7 +zn6/yxXPatcy69btpmnSmz0SPmeVjsM5Hbn+H2/+tXNa9m9t3/X9dT6vDU1TjGL+zb/wL+tfuOq+ +FmnWd/fR6bo2TDb7S84HytjqAa+Fv22PH8PxB+PeqQWM6tYeHo10e2IOQxjJMh9vnZh/wEV7OSwc +8W5dl+Zy1m3jPe3S/F/8MeMWKvZN5iMNyvlWxkAjp/XH4Ut1DNdy70BkZOZVYEMhzgZ9jkc/p0r6 +Vq8nc6rpNS7kssLsI7dV+ZsZA5Oc849/rXtHwU8GPq2oxs0L7IMb2wcFs/09e9ZVpqlh5TZ0U3zV +Ej6dlWGxtorW3CqAACQO+K0NMtzEvmMg3NwCOtfDzbs2+p6NRpQSNBnCKMk5BxyODUDSM7EKOpGQ +D/niubdXOaMdbjgxABK45yKY5BIcKOen1pPTYS0YbhGCA2ckYBpBjJJAOMAnPOKlbXHufMSRlDhS +evGTjP8Ah1pu0yLvBC57fnXq6n0t9NC3axIzNuXoOh/zx1r0LwWGLIFBGMDOCRXmY2/IzvpJKLbP +YNCAaNQAB8vOP/rVuKSRvHGR096+bk7u542I+Nle8Rmi+Y4xXjvxNaWOymCDa20kEHBHeurANqon +0OvCpOLR84Xsp/tZ8ucuSxI789sdOQK6PTwWAjkB9ScjI4P+Ir7aduVNmet9C7tIXZtLFeh/p+tL +EsisS4yxxgZJ4x/+quOTR0pu1h2XJCsM7jwACCKSVgqeWHfnjGO1Zt2Zajpc6P4CSunx48IqzOP9 +PUDyyM/dNfdOvWglmMBhWUSNuWAna05H8Tnsgrwc/jerTcey/N/16XPm80lbFR/w/q9flv6nl2tM +HnnLqszMSdypzPLkExqO0Y5+tcfLYQebPIJWuN6mKYBT87nO2OMHsp4P4++PMpTa2X9fL5L7z18K +7R8v6/J/kzzDx3okr6i9pYuiyOWLyo427eDtUe2f89K0tGkttM0+LT7WJTGsYBIHOcnJJ78nmvp6 +D9pRik9/6R21tUrr+v8AgbEzXVrp1m91dyYt1Bktos/MzAbtg9TxVWwgvNbuDc3gw7jdkjiCI8hV +4611xsoudjz5XlM6SUW1vFDFbEJCnyrtHIPXJx64qtqOryRSrbwGOa7TG2F/uoCMkt9f61hG85XY +5Ky13ItP077U4u93mXG3LNIOSvUgemOa1m1CTVJIrbTXa3CErNN08tsc47Hd6VvL3nqtP6/r1OeS +u3fp/X/A9DQivbbwxYtJeOggjUnex4wOc59a5oeN9b19LiTw1oyR2alQtzdMRuz/ABKoGce/6V1Y +TCe1bqVH7q/E5q8lF86Wr6f1/X4mbcePvGOkTSA6ZbOgI8xYWK7h64Oc/hSXXxS0rVLT7LI8sGqt +LHbC2c45YgZAPHf6V7NNS0+r99f8zzq2FhN3rtnTX/gO41DSpH0+e7s5HVWR1uGV2IGcEA9M/wAv +esvwZ4sk8LaN/YXjIXsl/b3UgF2tuX8xC2VJYdwODmuJ0J4+EoU4r2ifTS66/d/XUiNSNFJSfu6W +v3/yO0sfF/h7WLmOy0/XbdrpgAsTHaSfTaeQfapG1G8ggkbUNIlEUAZmaJ92AOpx2/WvPhgpxm4V +FaXS5rOooJS6d9/mNtvFeiarZw+XqaK0shiUOSrJKCeGB5U8cZ68Vzfi74pP4SivLhtDvb5rCSM3 +SwOm0KQCSRuznHPA5rqw+VVqk3F2Xr+BnUrUoWUnvt+v6GvoPjrQvFGjjxN4XvDe2bsQ5K7WKj7y +sOzDOa3fD3h291pHnuXFvpe/zEuHPJU5JC/571hXi8Jdz6f1/kZzmo03P+r9P1+R2enzQKsWm+GI +ViRFYyXLj5mXGM57fz5roLHw9HpsLi6YOXXczMcndnII/wDr15kNf3k3r/X9f0jycRJ0n7P7T3Zb +muZBapBb447jjiqBtVkAMhyTwATWkIXV2cDkouyLdraIpwqAEZGe9W0twvOMnGBn0rpsYOdy3FHg +AjoRkk08AEHPPYVSM2WLWHcVOOnWuZ+JHiJdL0qbSLWcLc3KYlccmKM9Tx3IJA+uaicklqa4Wl7W +vGJ8x+NPi/4f0SM6LpIOoTof+PeJspuHQysOvsorl/D+q+OPiZq9lY3Nw8du7lTBD8sQHb5Rj+vW +ro0VL95U26L9f8j7qjR9hTdSW61/D8/00PqHXtX079nj4Fa14v1OWMXlpYuturnBkuGG2NB7lsV+ +SRvrzUdUm1C6cyS3MrzSuWyXcksSfx5r28jS/e1PO3+Z81hm69SdZ/af5L/gmo87xxBPLU7GCgAZ +P054PUcVb0y5mFw1wcNuUgKM88Y5/wA9q9ly912PQVNS0ZPp9o2pXSQGGUs7BSo6Yz6eueevrX2L +8I/C0Phvw7C0iYmkjUknjJxn/CvMzqo6eGUF1OzCLmk2zs7WN7ucFhnaQev6flWyiqgCMQDjB5xi +vkavRHVVl79hr425Azk4A9qjIYjJPPscmskrmd+obmVQAQMnnnvjrSbgxwD1zzx60mhXAPnABwcZ +IqNpCwbJBxyeadrIlXWp82pGshBVugyG9/8AP8qawCMCyjcgOe2R6Yr012Po3voXbSCOWQttAYnc +R0r0TwaIzjAC9GPPU+3515GPd4s9WimqTbZ63oahY92SBjg9q2lOCykH5uAK+dbUnY8Kv8bK96F+ +zkr3zzXj3xMQtay5BXgngdv8/wBK68Gv3qfodmDfutep813LA6oxhJ5Jz3wO3410GmKBETgA7iB6 +4r7eovdVjJNJu+5qREZWR2DLwFJPQfT261LGVeXeoG0rwMEgnP5//rrjlvqdMdtBgL7AWxgDI59+ +aJ42KMCMZOGJyDj6VlLdHQmrNMt/DDUbfw78WPC2r3B/dW+p27SHdt+Xdzz6c1+heuRF53jCtIJm +KkqcPcHsoPZBnrXiZ7vTaXRfm/8AhvRs+YzlcuJpyb6P8LP/AIPyOB8cWaW1tJPIC5dfKdoeADjP +lxfTBBI//V4jD4i8rVzBLc26RxIULxn5bVNx+WIHqx6Z9/z8nCRc7rdL+vxvp/i7o9TLI+0oN/18 +/wAn/wBvHL+MdUbUNVMen2ItraLCKAcknHJOe5IBqpHPbpbnVJ3cCBSZSP4z7D3r6nC0pUqEIvV9 +fU6ak79dtLvr/W43TRqGvagJ7lfKCnbFCQSsceMbj74J/SuviMdlAtrajCKQSR1z3P1rpxC0VNHL +Tir8xRvbwSStYWEqeayETSEZEfUYH+1/Lio7WyjgCFyQWGGkPJbHQH86UUlG3X+v6+4G3e7/AK/r +QtGW5e6FraMVDDLSL/B6nP8AL61po0OmwIIGCBAWm3tgN+NO12l1M2rqxix6k/iy7LPEo0iA58mQ +YaQ/3gf7vp6/zoeIdavry5bRvDMCKpXDyA4EagdDivbp0lpTk/djq/U8+UuWXMuui/zOPvNL8R69 +M9nY6gdsAMs1wJQygYwQP1rkG0m50/xfYR6t4kWRrO7inDCLLnJ/iKjgEDgHnmvdy+nFy5norHn4 +2cowcXds+gtJ+LWn39nNb2843We4SyythI1HAwf4uOx9a8n8XfFmzsVZ9Is4rsPOVeS853yMcjav +U8Z9B0zW2FwkaEptbt79l0PKc5ySpvZJX83Y5p/Emr+LLdNY1toND0RTtE8jGOQyAgkRheXPPQD+ +VVpPiR4qt724t/Duu6la2NtExtjPM+6cAAMTuOeQScdvbNdlbD0qz9+KbXXsRSqTptwg9P1POfEP +xO1rU4Job65mYuFAYschwwwd3XPHf3qHQta8d6jqo07wzeXF1f31ud8cUobzUAJy/P3h2zyKyhQj +ZpJGlatZXPrb9mX4X6r8KvDFxqvxHlYR6rLHPb6Sh3OZDkbn/wA/nX0DpPh/XPFsaX2okWdgATbW +8S4CrnqB/Wviczq08ZiZVIv3E/vfUI13Qp+2mtdor9f66HXQ6Xp+mWn2eG3UbcEkZwcCpJ5d58tX +IUEHPrXmL3ndo82c5Td2xWK+XhR0BySOneoo90rgkYwOPXrWkW+pzS7l2EqFyT1HSpXkVFLZJwvP +c1d3axFrvQtwK3kKwBzIuR34rK8S+KvC/g+za98R61bWMYAx5rjcx9h1NJzjBXkVTozrT9nTV2zx +Hxp+15olkZLDwZYyXRJ2/aHGzPTJGeg968B8Z/FDxn4vmZrnUJYI3bLRxMc7SOjN1Ix+HNFOhKb9 +pWXov8z7PLMshhFzS1k/60Mzwp4M1jWbm2gsbORhJICWPBXqTzX198G/hfp3gy1W71IRiZMtJNLh +VQDryf51riayhDXdjzbEKnSdOG7PkL9uH4+QfFTxWPBnhbWo5vDfhp9g8s5W8u2Vg8g4wypgKOer +ZGR0+cbS2McKh2O0NkFyflJOMf59K+my6h9XwkYvd6v5/wDAPJwtJ04KDW357v8AF2ElhO1FfcIz +IclBnOemPXH171YZjZWqxqxy2NpY4AHXn9K7OW7UUdSkuVyZ6Z+z74YbxDrf224hJjiwwJOec88d +PTrX1rIVghS1t0UKowuMD29K8HOqnNXVNdDtwacYc3c2tMs/JtxJIo3EDJI/LHerTksCCQSenr/n +/wCvXzlR3dwlK8xrA7SScdBz2qAoQcqeCR7VMI3Yc1kRu5DEBMj1HPakO1xkg5wAeKpxdrhfsNOe +pHfgj0pCY2DBSpyMY749KiQ43ufPIg8tSVbOOcr1/wA81UuQXdkAOepOMnkV3O+59PFa3LtlINix +ucFScZGfT/69eg+DmVhGwUDnIOOw7ce9eXj17tz0abtTaR67oMhEOCuOMe1a6kI2GJAz2Pevn5Ra +ueDW0qMhu2JhIJB7kDnNePfFAE2VwADypwuOtdOCf76PqdmEs1JHzfdkR6m2XOTnA5GAT6/5/Cug +04skKghd2DyOOM859O/HvX29VPlTMocrbTNCJsLtJO7djOQRnvUsRBOSDtwpI44H+NcTtc6V3QIx +ErIyqoZhg9BnP8qilDuWKhTnk56Hiperuaxas7GRqim0niuxIN8Tq3PJznIP0r9IPDfiCHxR4O0P +xNAwaHU9PhkkeE5PmbQGiT0wQcmvJzyPNQpyXn+n+bXzPns7Tfs5vo2vvV/0+65g+PCRoTSW7nzI +3MbLHyFGP9Wg7nux/l2+dLHSLSHxLJdX0KM8RZI7JcEAtu5z2IHT3NeXlUnzSSWr/q/prf5nZlr/ +ANlmuv6f5/rcXX9OhiSO8eNU8o74pW6XMOAR+Kk1wduZtWuo2RHS3LsI4ScBieQfp1r6nC6wcr6L ++l+Ghs7TSX9ef3M7nTraPT18lQCxOHz/ABDvj3HGKqahqDPKtnYsN7oQ7hvuLn278cUqaU5NsdRu +1kM0+1iWUhQN3Dbm53k4BJP581PNdvNItnblXkc7dhHf1q922TJaqPQv29tFpamLzGLBQXY8jJ7V +z11eXWu6rdaFEQltbLFLcJj5pFYnCj/vknP0rpwUVOo5y6a/5GdeVqd49f6/AXxFrel6JpzxSXUU +MgiIWMZDA+mB26c156nxHt2hXTNA0qTUZZSGuJxkoSTyCT29j079K+ky3DOrTc5q92eNjqro8sId +F9xxXi/xrrqi6jTWY7RJGMZtrU4HH97bzjr1HeuX0mbVtd1aO2s7q4ku7ojcBuwcnjP4+38q9eFN +JuK1PPvf3mex2dnYeD9KuG1WXzo7M5ZC+I5rnqwZs8InGcdTgVy+heLtC8R+IfKi0OK/kjR5Vdoy +GnlzgnAPyKMgD24yK6/aWdoI82EZTcqjdl+Xf+vLzJ9aktdR0xZtLmik1JSGudRcZtrJApLRwL90 +YOBkDnBI55PGaDeafNfeKY572e7gtNFuJhLK5IL7QqhcgHJMg54znFSkkrv+tdyKnuxa9PzWn+Zw +fhjQdf8AiH4ht/DelWctzd3LqitEhLIAe5+mBz7CvtD4W/B/wp8BLO2v3t01/wAc3PyJGBuS2LA4 +XA7+teDneM9hSWGpfHPT0XVm1Ci8VUSvaK39P60PdPA3g6/ZpfEvj2Y3OoSkuIGPyQ56DHcgH8M1 +2Nvqsit5NszFBkDI7Z559K+KlJSl7KHwoWLmq05TXw7JeRfe43KqA/NntUEtwdyrGM4+96DjvVS0 +dkeclfVkonZlBB3EZAyPywKVASPmJ56gZx9K0itTOd0W4xnaGGQBx2puq67pmgWTXutX1tZWycvL +K4UdeBzVTskRGLlJJK55P4m/aKj1jT9Qsfh7E6SwM0H264TAU44ZEPUehOPpXyr4gu9c1i/ur3xB +eXF5eyODI0kpdt2e3tXRHCui1Oovef4f8E+tyTCwp8yfxdf8h+i+BvEetXEL2WlyhHb5SykDrya9 +W8O/BGN8S6m+XBGVX+LpwajEYmGH31fY9mdXS0T3Twf4U8MeE9Ja/uooLa0sYzJNcTMFjjRRlmZj +2Ar4o/al/aW1H4o+JpfCngbWLi38I6cdg2Eob+Xo0rY6p/dU/XvwZTh1mGK9pVV1HXyv0/ryPnZS +lOu3fRfm/wCvyPn61sS0nmFN2CGZsHOeTn8c1Nd5iCLkruA4HXHbB+ua+xcruxvFJDtPWS5lYITk +kHaVZiMcdquXmni9MKQjzAz7AFHzA5xjaSCPyxyOaukr1LvoY1ZckErbn1n8DfBqeF/DEErRFJJQ +HJOAckc57969L0+2N3fMSW2rzj1Pf+tfG4+t7TETmepFezpI6QxrHHsDHI9RzmonB3hw2OOSRxmv +KW9znTb3I2yBkgjnnPoajZOg2+5GaqNm7IG7O7I2AQhQR6E1GygNnf8ANxxVSKixu0kcscggYxzU +buF5IBYHBx3pKz0Y1e+h4FMDlmQkAjbjH45qtL/q2VSMtwMe/HWuy66H1EdNWJDgOGLY3HGT09f6 +16H4MkYspBUBsjAPOOK8zG/Dc9Cmr02j13QgrIvOMnOcVrqg6bcjB59+OK+elu7Hh17+0ZHdBRC2 +7HAyeOK8k+I6ubSYAYwOCPT8q6MG/wB6rdzswvws+ab0kaqV34HynIPTn/Ct6wiCLk7jlsZx/n0r +7morwRjBqLZoREAghcBuCfqPfv3qcCMhyM9CxI5J6VxS3OpPQTcruVRxycknvg9/15p0Qlct5nzZ +68ck/wCf51nK3UqLsU9ZtWkgOE+Y8EEf5719Z/sgeJjrXwuvPC894Xu9DvG8mIH959ncA4X6vnmu +LNIKpgmlrZ/mmvxdvmeTnEf9mcuzT/G36nqupWafZZ4rmVYVSNleRPu26t/Anq57mvGdZ8LwSTnX +dJTyJIs+RgD97CD8yEd3xyCfevncBNwnKV/6/rX0OPBVXFeV/wCr/LX1Z5h46vw+pReHNPlS4s7t +xdRZb/VBuqY7c54+lTeH9OhsICI2jkKDYi4yVXvX1NCTVBW66nspbuS9fXuQa9qt5bullpCLLNIg +OSP9Wvqah062Sxt9zdVJkctxvOeenr/MV0w9ymrdSXaUnfdE0t0scSXFuNoGV2t0b2qeC21axt5L +5LO3uLiRdyo8hRkGckFv/rZq4qnF2qdf8zKo6jSlSV/8ipp/jfTobsWfiK1n05hg7phuiYdeHHHb +viuT8YePrLwlrepXlogne/tEW3WOQEF1Y4YD0AJ5z6V6OEwU41HTW0luc2JxMPZ+0XTp5nlF7Nfa +9cfbfEept9i27ysBy0vQ7cevqT061i634n1Se1TRPD1qthYu5Rbe3J8yRSeC79WP447V9elyR5I7 +HzLlKs+aRzOrSPZXCabLN50zMBMxydvPC57nj/8AVivT/h99n8EaHqnjrVZ0F7LEkVhDwGOT8jZ7 +BsE/8B96cHaLYql+XlXXQxfFviTWvHus2uj2UUz2zsoSAAlGfuQMcqP55J9u20HwfZaB4cvdD8L3 +aXOrzIU1LUQT5cMZAPko3brzjrj0q6EbQu9zHEuMEoLbd/15s4TWLrUvET3vgzwxIkej6XGbjUb8 +Lti2xjLN0HGRgZ5P51q/AHwZ4i8W6Pqt34X0uOWS71Oysc3CbkWFC8khOeTjYn59utaTmsPB15PR +XfySOKrKMl7PrdXPpL4d+C/DXwts4vDfgG1S/wDEd4+LvUQNzKT12kdwe/8A+uvdPh98PoPDe/Ud +YP2rVM+Y80i5weuF/P8AOvzbEYqpiKksVPeT08l0PVxSWCw/sV8UtX6dv68zYvr55XaIJjLZHXHX +qaZC3kocPyccfjj8awhHkhfqeVLVWGi9kV8dl6jPP+elS2s4ujvQ7xnoDwBn9alLmZLSimy+u0R7 +WcZ6YI7/AFq1EEjG52wOp/wqoyUbtmE1oeJfE79q7wt4Z1l/AngWNNc8QDckrCT/AEa0YA8Ow+8c +4BVenrnivn6LxD8QPjDFqOoeNNYd9T0e58wWaDbFEvbCDjHHU5POcmvZy3BqyxNZduVdk+r8+33+ +np4fD/V4c8t/yX9b/cdV4MuJLfUVhnaJYb2HcvH8YxuX8q9bsvCfh5zHKNNheZkBYsuTxjr/AJ7V +hnk5wpqVN+p6+XJKq0/I6G3sBEvl21uqADoq4xXTaX4cgBfUdTnjtLeBPMkdiFVFHUk9AK+QjLmb +lLVnbi6yoU+aJ8TftYftOr8RLh/hz8O5p4PC1hMUubhDj+0JVJ5/3Bjgd8Z9K+crGBusqc8Aj8s1 ++kZZhfqWEjGXxPV/1/Wp5NOLWj3/AF6/5fI03CeUqIkcfJTBU/geOv8A9frVO5dhOYyTJuCqMjtn +mu2LL6WZNaKLeJntz5ZcYXqSD14611/wo8OXPiTxXa/bFeVIm86UsP4snH1HenzKnTnUYO8pxjY+ +ybeKKwtYrSHoiccdTiuj0CyNrbb2zlyDk8dq+Eryum31Z6NX3YWRphcMqsCctnIPrTJshyMYGc9P +fpXGmrnEtyGRTsyOeOBx0qEjLZZcEZGSe/at4yvsNbkEgViQH+bPUdOlIynfyTjGPXiqemjHfoMd +yq8Dp6VDMD83JwBwD9Kdrbji1c8HMaA4EZXjAycjPbkVUnWJgxjLZz34Heuldj6pPW6KplZGJZeW +JHA6fn9a7zwPMriIoRlcE5Hsa8/HL3LnfR2bR7ZoTqLdQyjoATWysZYkNzxzjr+tfPONm2eNX/iN +kd2GWBkTgkcZHtXknxHJ+xTgYO5TxnjpxW2Eb9ovU68FbW58w3YVtWMhODu5B4/l19PxresGR1Ck +EgfdKkcj/Oa+6q35UjGL1ZqQqroGcsA3TgYx/nPWpAHU7YnwSuCAMCuGSdzqg01ZisoVl+TAwdx7 +dTVq1jZQ2ARknuazle2pqkr6E88PmKQVBOMtkHk1q/Cj4gXnwl+IFn4kjBks5D9mvIznmJzg/iOo +rPkdanKlHdrT13X4nNi6UcRSlTn9pNfefdWrtput+HodSsX8yzvoVltNnQRv0kPqxrz2bTP7F026 +XVrgfZrVDOJTyAeSrfhjH04r5OnaLcV12+fT9PQ+Twc5KDpta3/Ff5vU+crCxsI7678WoUaDUp5o +7XYCAqhuGAPIHXH0q3f3H2RftFuU8yRNuFIAb3r62k/au3ovu/4J9TK8Y3l5+b7blTR7FYVlup3w +8pBkbGSMdByfc1avLOcsEMTkEEqAu7AP9PWvQo4eeIn7qukYTqwpr3nZvuGlrbA+bMu1osxxwvlW +ZsdRnqOKg1XX9Xs7dmuJLCyt1OPMmJLDrj7xAH41pLBuFT97p+o3VU4PkV/6/rY8c16C4Fzc3lp4 +tkMN0Sjwlg8eAT9wf1HrWVp1nc38bzXNoYrCBXYlsb34z1PQdM896+rwigoc0VY+ax3Nf3n5nH6/ +42mJFpb2giiiQoix8Kfc4PPH610/gPSodP8ACWveOr65E1zbWb/ZXZQyxyMBjHv8wGMcfnXa2+Vy +Z592ot9zzfw/bSX+tW1zcqZFa5QyPksMZByT/PNdn461BriCPTtPuGNnJertEPPCW8KocD3L/iO1 +ZSdopI2SvJMzNM1Wbw3cyT2aTfa44ZEZ5ZXwQwIJAGMccEc1urrWpw/C+91Q3G6We88mGIKQqjOW +cDv125PqK2oKUiMSldWWraO50X4e6zqPwe0vwNoFhHbap4gkN5q9433orQfOoOOecAYPYtXovw3t +rrwxpdr8K/BULLJb3Sw6nd7f9c8qgtlvRcqPwrnzSSnRlQfW1/R/8MedgYpzdafeUvu0S/I+n/An +gDRfBdmHiAmvmbEs5HJ9QvpzXR311hgzDk54HYV+dyl7WfMPEVpVajnLdmLcTI0jMsYJzxzjB9T+ +dRzyRwws5YhiABkdfbH4VV11MknokVrFJbmV2kQqMYC5ySa0rBBDI8h4UgEgHgZPT+VUoNIKslsi +4b1pAsUEJc4OMdB7ZrnviToeo634Wu7KHVrm2MkRUmBth4B4z7/1rOcU3eWqOzAUUqkHPufBt14W +ttB8QO92rWN9FOxhvgCY9xzgSgfwn+9+ddjYT6zo+swawumiC/G2GfacR3Sd93YqQeGPTI98/V0Z +OtBSXVf19zPZx1JU6jps7LUYJordbnSYmEUuLu0xwyZwWX+fH1r1rwW1xqTQSQx4aaIbvY8c/pXl +5vBVMM2Y5fJRndvv/X3nYeI/EHhD4Y6Q3iDx5rkFnbrGWWDcPNlPXCr15PH418J/H39qDxd8X79t +I0uWfRfDERYQWELkGccgNKwPzE8cdBXj8P5dHF1nWmvch+L/AOAbYio6kvadOn6v/I8VtbJpZ3ZQ +cZAGSOoHXgf59604ohFIkTMjoxHHfp619xKWtkRFWVmTzTLDbhoolLAhsk4wOePpkDn3rLkaSUps +RQxYnpyTn+XI/WiOqbM7WZoR2oleO3MiLuI55+VfXHp/n0r6E+B3hpdMtJdTeLGfmXI5OOAfxrnx +s/Z4Z+ZVPWpc9j0OeTVtSjgBJEZ3MdvfpivRo4hEgVQcBeoH+NfGYxcslE6KtRSsiIyLwmCcDAye +c0wM5cqW4x0JxXMlbQySuIyjOCB14GKrsqk56EDAGOtXFvoCskRhQ3KuSSeoHTv3prpgjJx27f5/ +/VWr0sC3sQSKSAo7nAI9ahcOGJClhjmqtbQcWup4MzqqEgck9D1FVJMKvzcjoRnGPWt9bH1qWupn +3b+WoIIABAGD29a7X4eS7thYMcgD8PT24rmxiTpNnRSk1dHu3h+X90qKPlUc+9boKgBSe4yOc/T/ +AD6V81LfQ8qvfnbFuwzQlTzgYJx0ryH4iorWcykYO0nd1/GtMIkqifodeC1TsfL98WbWWVG4B4OQ +O/rWzpzFo96gHaARk/oc/jX3U03FGS+Jm1GheJTlSuOBT9rpllUE7gMDr+n41xu7OlWiORioCgsu +7gg/nV23AVcOuNp5Pv8A5xWUtrGkbXuzTEZ8ksw2kgEY9h0/z61i65ao0ZkcZCkkFeecms6TtNW7 +hPW7Psb9lW7l8QfBi3ttTdpTYXk1rBIxzsUBSFOe3Nbvj/SbeXwtqWm304hjnUJLI3G1c/MR+Gf8 +mvmsdajim0tm/wA9P8v+AfG3lHHzgv5rr772+8+YNUmi1BltonjS3tlWGAIeAFXGfxxn6k1i2Zvb +rUTNP5iRQOAu7BB7bq+pwkFGF29f8/8Agn1FVu3LY07i+adDZ2BDSOuSSOOOvP6VLaaRPFi71a5k +3lQqxK2BGO+cV1e2dGK7mSpKrKzV+5Rn1HTbjWTpmo2ERijtjL56uTsYNgcZ45NeYfEXWbm5u0td +P1ae4tdh8wL8+Vz33foBXu4GvUqVFTqaqyPLxlGEE50dLaNHAr4oi0+fynjQoimO2AJOxjnkA/zr +pNR1eOfQreCKUAyxxtJsPLDn5SfqBx7D1r3VGzujx5y9pFJHnOraVcROIbm3SJCUIkzkNnGPr3/O +u60aObWNOvPh5C+AbMy4427nZNpPHXIA6961UeZWOd6avoct4ihbwis/hWGLZ9o8p5ZSpDEIxIUA +ADO7vntisSC8uIZcnkrwwJz9R39+lcspSUtGbRta/c15vHevW0XkGW3Z1UFWaJMFcDjp3H0611fh +KPWvFvhu2thb20VnbPcvM/lqI03bPmIA+oxxnNbQxEoRcpPRGTgqjSW//AZ6f8PL7Xb3XRHHaXdx +DY6VCZTHLtV9jFdz+wI3fWvoX4c6DcaJbRI+ipBLcTC7u53wXl6FR06Dj8q4M8rQo0U7pOVn5vse +fd+0dHt/Wv8AXRHpCXN3LIWUfu0GQR3PNVNS1Z97IjY7Zzkk+gr4eMOVWG4qc7LoQRy3EkIJ++xy +R6fX1P8AjSM43hZHV5RyRnsBz/Oqa2uwSV3Yks5Znufs9opd2OXI5VenU10trpKrD5k7eY25QQRg +D86qUuRW6jjS5nzyLcVsEYsUAIwQffmn3tvDeWxWaFSADu9TxXPPSJ1J3kmfHvx58KQWGrtc2SKv +mEocj5WJ7E+9eI2HjaTePB2vXkwRgF0y4UnMLYP7hzxuQ5+Vs/Lgfh7uSz9tScH01/r8/kfSZvTv +TpV+6R6N8MvEM8VzfeEdQkmcQ5urNpM5Ab/WIfT+8B/te1e1aLqmoaDo09zpMm2QKfLY9VH0Ppgj +8K3zOmpUZR6M8ahHlrpPVM+Nv2gPEusa/wCMpZr/AFWa7ZECyLJIW2E9lHb6V5tFIHbauGAGCXPU +16GW040cHCMVbQ6sWv3ziuhrW9t9lUYYbGGcKc49/wCVXPIZ38xUVwRyTj5Sf5f4A1bd3ciW1zL1 +OUGNkjAGzIJBB9Tx19KjsRC0WSSCg6deTx/hVbQJTdzpfB2mSavqqRjcTM4TbtBAHqPToa+ptMsI +9D0GCzgbOIhwDwfX/PtXBmsrKNMKS6o7rwDaeQPtUkePM+YfWu3ZyQc4xwAPavk8VJuoFRa2IHQI +pb16Z701TzgMB79BXP6Am27sYVCtlmOOvXk81GwUMBjGTnj61cHfUe7EcKE+Unk4OfWoGByVZT6H +GfQ1V2tGNEUiNtI2HPAGB0NV5VJctkbQO3c1UXqUklojwASK5DmQcckFvfHSoJ3RkMezGByMYHTP +5ZrtaT3PqI3ujNv422BjgYOT1xXafDsOApdg2CD8vp/n2rmxNlSaZ0U3d3Pd/DoxGuDj5QMj0NdF +GWDbSQWPBzXzNRWep5uI1m7Ed2zm3cdNwI688+leT/EVXFlIQDgjIwOWHNa4VN1FY68HZXPl/Uo9 +mrSIDh9zckY5B9/x/Kt3TmWSBlZQMYwAM56YFfcTd4pPsZ7vmRsIFYEsqjIPbgj9KmZSwDfKcYJU +cZPt+VcTavZnSo6Eaor4DIOgwTkfrV+2RVITdht2D3BH+f5VlPbU1T7GvABMm2OPJwec9qztStw8 +UjKpzjvnPX/CsE+WSuXa+p9RfsZ6nbTeAtW0DzB9osr8zOmeSjqPm/8AHf0qD9qzxdNp9hZeE7N3 +FzeoZLgjoYw3H5nn8K8PEU/aZjy+d/xv+X5nytKlfOZX6O//AJKn+dvuPnWwvJEtRYlcMOWLDAYd +z/OrxluLmIWllExZ1JLqcqgz+lfTU3pZ+p7tVR5nZ7ly1Nt4Z06S78szCNPNdwQSO3Slv9et92Uu +wkOwu8hI284ODnsKajKtPn6FNxgnE8E+LfiPUNM8URzaJqEb2txERsgYlsE85P8Anofx5/ULq+8M ++Hkhu5XN1qjtKWcbnEa4ABJ6Zz+lfX4SlGnSU1u0fK4qvOpJwe1zjow02yRlZg2FVgOp4PSu08N3 +8V9o/wDZDN5d7E7yQnJAcEYIPqOD+tehBp6HA48r1HeKJDqui2zxrsubOTc0ZXG5QM4GO2ckVDea +hqHhrxnp+tWCGQjT4LqZA/DdSU/MD8Rmt6W6MpLVxbO9+KWl+FfEWg+HPGt9eS6Xcaojp5nl5VmD +chhxjGCf/wBdeKeIo7bSro2lnqdvqECrkTQ7lHfgg/8A1+orCrGDloyaE5eyTfn+Dsb3wm+Geu/F +fXxbwFotOtmDXt2wwkKemfU4xX05o/wyPiG9fwV4QiMWgwBGub0khWCfeJ9c8+9eRjsZCFT2D2Su +/wBDvw0eWEsQ1pH+rHpUWgaD4Q1S00nTLN0sb+z+xSzHAct5isWP5dPevYoUhkvFtEcfd/dkdNox +09uleRmk5YqjRrtbr8tDx5uUKs4y31ZJqlzBZ2uInLFj0BwM1xks8092JCWbd0wPU/8A168uKcve +Kw8eVOUjb8yHSrEz3c3LghVJyT9BWbYW0t5dG8laTDAAKBj5PSonUjHRLU68FhpV1KrLSJ3Gj2iW +w2RRBVwRkA8n61uW6tJCwZBy2cYz3rG7buTW5U9B0VrvJYHgjkdasTaazqQUILDJwcZ4pu8kZc/K +0fOP7Q3h+Y6fJPGBtQnjGevevg74gwyWWtIhXCugKls4Vutetw/Je2cT67FP2uWwmuh23gnxXM2o +aJrtzPvmS5jjvCW6gkofrkE/ma+to9PitdD1C73Fo0V5FO4nKlcrjPpzXq5hD93yv+tTwr+zqRku +p8EeLNTfVdcv727Bd2uHyzNjgHAGPwBrLijYkJs2HGSAMHtXo04qFKMV0RrUblWcn3NWAhEA8thw +QobjAIPf8/xq44gitvMKjA4Lbsb+eMZPPNZeopWvoc5POZSyhwAx3FC3GcEdOPfpUgHlxJBGwQyj +JJGTzgdvzrVK7USfhi2e4fADwi01y2qSx/IpXqM8gda92ktTqN/Hax52qASMdh0x6V4OaVebEtdk +XTjaJ19qzabDHBEgAUYINa1vqUMi7HGCozx2GK+dqx53zIGuxZDwFAyyL9T0qHG07kkGMA9awtbc +lXvYVJPmI6ZBBAHQUsigLuBPocD0qtOayK0uQMxwSME5wDnjpUYY7T8x+h7mttbXGrW0GSAqigY5 +4JzzVO4C4LbcHA5PrSi9VY0jrufPwRViwJO5yepqGSYHcu4A8njPfNd120fT21dkULt1VNob72cL +k5rs/h3mORVkODx8rdRz+lYYt2os0o6s938O4kiQZHHJ5ro4wCFbGeh9c18xN2dzz8R8bQk5PlOx +Xjbk968k+ITMLWYAZ45yRjr2z3rTBL96vkdGDdk2j5m1WFm1l/LQc5+YDgc5Na2lQO0WA/cA4GR0 +r7qrF8qIptO5vRRoi7HCnByeB0x0/WpWESrtUg4UjIB9sZrhlbodUUyEli21QeeBgdR/n+VbXhq0 +06e/87XHkNrApkZIT88mP4B6Z9fTNZVJOMG0tehpaVmoaPoa+pXaanqc19BZRWsb/JDbxDCxoowF +yev1781TktjIm1mZVOcEDtXJaWnM9eprBKEVFdrHe/s6eMIfh/8AEWGG8crYaxi0uAegJOFb8CRX +SftSWF4nxHWWchoJbKNoSOgAJyP8+tctVJYxVO6v+Frfh+J4vs+TNlOX2oP701+ljx+RHv1MOngR +zpjJIwAOMmtnSbRNPiaxtoz5kwbdM2cSe2fbivSjJOPJ16+n9bnpSjZ3Zi+NLaxdfITVrqGKaIpJ +BC+0Z4JY968K8R6xbxxPpOj339oymZgrSBnKLkfLg5z0x+FfRZYuePJGPzPGzFSpv2kpfI5HVNfl +v7iKwuYreJLX5XaKIZduOCQOckfpW18UHe78Ux2ttDJ5MVrAYu4AZc/zNe/CChBI8CpPnldaf0jN +kS0tYljs2jlSyiLPKAclyOg/MCqVv5trB9riMomB/d8j5WPrj6fr7VStuJu61NOW/uTNZo8gF3KE +kCsdu5gBgc9z/WvQ9R8OaJqunXEu9rXWprEWqQMAAGSVS20npwfyPT16qe2phUTsrFe88PeItd+B +l7b31qnm+FNQSWKSWQAeS8RLICTyBzXlHgDwNrPxM8RQ6BpEDfMcySkZSKMdz6/nWGIlHDqU6m0b +sxpNybpx7v8AHX9T7Y8HeBLHTNLtvhf4CBSEgNqN6BgzEH5nY/3Qf6V7dovh2z0bRTpOiKFt4wFZ +wBunYHlifTkV+e1qzq3lPebu/TovyPaxbWGpRoLpq/X+vyRz/iTTvLudKluUAUXHzZORgEV2vhi1 +invpbi2JZQCoRjkoO+K9GpVcMLSpbp3++587if3lWdaL20INc8uG9a0iYBY9zH5gRk+9YV5qlpak +PHF5spxsH9T7ZA/KvOc+VXOzCUJ4hxgupXtIrnULxr7UHLyKAEAPyovoB2rrtCt0cqzNgY24PSuH +4nqfQYmEaNL2dPZHUWKtEEDtjaTz7VpQIxXaD0GQR3rXbc+frWvct2ka/wAQ5Bq/Gox1JwPzFPRo +5ZN31PKvjPoq32hXHmRgnBwMdq/OP4waYq3LyvBlYXZQAMHtXZk8uTFo+0wlquUyj2OL8EX8s14N +MmfbHdboyGGcEjGQfrivur4Vavca58IbfUL597nT5Le44/5bQ5Vifyzz619NmcEqd/P+vyPn5yUo +xaPivxXYRWeu6jaRCOGJp3eKSQdATlQe2DkdfxrNiaYKnmPlWj2gZyAoI75Pt+ddKtKCkjW8lOUZ +F2K3AfJQ5zg89COaTWpBHFt4CsQSTxnI+vNTu0HmYlqG8zLjv04PHP8AOpZIpL/UoLS2278hVzxz +nH+H51rT/iX7Ey+Gx9ifDHQn8O+EoEkTZIYgCWGDXeeD9NWWRrxxgv1yfyr43G1b1KkzotaldG7e +WzlywXgkgkDt17VQkjKsSWwcccYripy6EJ6DftMkTfK/GM9OpqymoOhLMQw4O7HtTnBNA2nuSxap +DIWBYDHc9MVbjuFlTO/cGPIPQ1m4SixPyGvIFGVfqfrUDMAcLwvUU2tBwZGzgg57dfXGOlVp5FYM +VQ54H1oj7p0QTbsj5+82QoAM7jkDnv8A5/lVaQiMFwDkdSD3xjGfxrtVktT6XVOxQukZE3hgQRgE +H9OPxrsvh0oYr5jlmyDk4+uPescVf2LZpStc998NANHtCdAM5Pt1rpoyQM47jjqK+Zqp7Hl4r42R +3iusTEY6Z615J8RsJYzkMS2OncfWrwUl7RO51YPZ2Pmm/kkGqyYbbl8AA8jn/wDXW1ZvHKjBcHAx +jHOa+6qNOCsZqNpNmuilVbk8fz/WrCxgBwQMkEDPGT/n+dcE0zrg1YZgFtoBJA55B75rU0qT7Lcr +IyrIMHcrDIOeKyqbaGyWlmaEYMDq5jZjjBYDIx260rXsCgF4JcZ4JTtjNcjTlsatqK10ZNYQx3Yl +1DzDbRWo8xpLgbNuOQRXR+M/iinxB0zRruYGR9PtzYSzshDO4xtLZ65Bx9a56kJVKqkl8O/z/wCG +/q5zzhCpVhPqr2+a/wCGKWjaZBaW0kc7oZ3GJy54I6bRjpio9Q1O1sLGSQxSywqSVKcPkHg8d693 +A4J1oOtLRdP69Dlx+LjQmoLdnz34v8Xat4k1zULWxnezt7WB57x4wdxRRnaM9MjArn/AeoC50/xF +eR6cklxYW/mwzHJkjDMEUDrwC2714Ar7HAYWOHo2W7/yPlsxxTrVGr7NL8jk5NJeC3tpXlBuLpXn +WMDLCMEgE4HUkcfQetdTa6nqHi7S7bTrKB49Xt1FucAj7RAAThiehUZ5PY+1dNn8KOXRLm7XKniq +3s/D9tbaGpikuI3H2mSLC5fH3QfYHH481W0e1fVPEen6Tj5S6iQLxhQSST+FTGzdivhhcW+T+2Lf ++27RJZmiuJ96KvEYBXywDjvnFdFbXOs+ItG8S63LOqS2Vutwyn5BHMwEZRc/xMFBwPStY3UdTObU +bP5ffYzfg34tc3mreCtVE1zp/iO2a3aMEsEmHMb47YORn/aNfSPw18B6b8PNDg8IeFpY7/XtTYfb +bqI5Ow5GAewK8fQ49a8LPaj9jGjD7T19P+HOnLKUfbyqz+Fa/cv+Aj2/QdItvCdn9gtSpuHIN5Kh +zvc/wg/3Rn8TXd6DNHPZyGIDJABQ84PfH5V8cm6tXnW39fmGYtul7R7t3f6fctDmPiVpl7PYR3el +kFovlCA9d0iEnj2H610trf2+haeTEoW6nDHbjoPWvVqz5qEEt1c8OKlUXJ33OPlvrq9vHlRA/U9e +PqfWmQWrSMzTDdI3DMR245rzJ+9otj7DA4eOHhzP4mv6+837eBYwuF4PfPNa2nnySqhgAxBAPbFc +730IrXlFpnUW7lzncfQg9Kux3CKSuchsAYzxxV3sjwakb6F2CYA8njI6HvWhC6nI568Va7HJNO5z +fj/T01DRrmFBl9hJGM8etfnn8a/D8Zu7+EqF2ZcAL0/yf51pgpKniYs+wyGTngqlM+copBa3qmAA +FJB2xg+ua+3/ANmW+j1DQNd0FnEkLSi9QMTkC4iBcdOm4frX2WaW9hdHhpWg12Plz4o208Xim8F0 +MTW8EcKxEA7gvyZP/AlP51iW5UIgckA87SCMfX0Of5VdJt0os3qL33bqXI7ckrKshVAeN3VfxrM1 +G5aWZ4JBnjsnp+H8zTVnK5CeliGPNvA8nmBiB8pI7V2fwa8MTeIvE0V/LKMWx8wgqST6ZP402+Wn +OfkJ6NaH1pNtEENjENpCqvBxXbaFbJaWCgR4JXODXwteTcdd2zqqr3VYtNICMHP4DNRLbxTsWkHX +oAK5l7uqOWSsRNpu4fKAMcgY79apy2ik7CMHjBH1rZT7FLXQzZo5I2KgHBOBjg0b3hVfLdlDNzz2 +rq0bVyFJ3HjU54xyF6ng1Il/FIBuJX0PYf41E6eumxvBx5dSxFKrL5rMMZ4PXjNMkIYAL3HXHFc7 +TWx0UmrnzyXyiqHbg5yB1/zioXQsCGUjJ45wMdRXZZ2Z9Ot7MrXcbCPy3Y4ycgnvzzXX/Ddgk4LL +gAfMM+9Z12vYu5cV72h774edzApbHQZA5rp4o2C47Z6DtXzVbVs8nEJKbsMuyBGTjkgkHPSvIviM +imzmwAeOM98ClhtaqOzAaM+Z9SBfVmG7k7sEHuTwK2NPYLwSGOeSMk9K+9mvcXoQnqzciVZFxuHI +5Vf5GpGZhwEKjC4JIIJ6etcD1VmdEXZgjMTtwQF4J28Y9q0rIK3yMe/XBHtXPVTSOinqa0IkXblj +93kY/lW34W8O33i3xBY+HNPKJPeyiNHc4Vc9Sa4mlu9Ea1aqo05VH0Tf3GH8Y/F/gb4X6JrXhqe4 +tfE+oefFGluoZTFIjfM7eqA5HHU5rC+Gvx6sfHcL/DuHwAoe7j3RXIIzbBMPkHGeo/Gu/B5Zi8dh +liIT5I3uk1rbT89TwKuNpe0vXi1J2krO6TXT5219dj0PXNG1XwXbR3fiC0nto542mt2mAG9eMsD+ +I615H8QviDa6Voh03TJj/amoYdHyCiqenPsDmvYf+1YmGFp/BFpfduyaM4yw8sa3dyvb0vax5tqs +MnhXwJqrzu099rLRWW9gGDS5Dy4PfapVfqSKn+EWkPp3g/xZ4muYhLaJYNujOctscP27YUj8a+00 +inbZHxtSbknJ9Zfqv1POrGR7xvtdzd+U1xPyQMkKCGxjsMkflXc2ni6GytJ7PSdHHmTwET3LgFpU +A+7hR8qk9cf1rldSVrI75RVtTibua51O5e7lijRUA4HAUYxgdP8AIrd0Vri2mvtbt7OSRjps6RyI +PkVmXZu3ewJPrkVKu1YJe8rJl3wxBLZ/D/xAZWX7VKoeONl5RY2jy3PT74/AGs7XdQsdM8P6ZoEl +1K7eSNQuYoVP7+4lwV3tnoFC447t610yS0Uv66nPLVu/f9LHsfwc8AQeCPDx8d65Zbtd1yMJpFmy +g+UG48zGPb+Q9a+nvhp8P08GaELq8DS+INVUyTsx5t42/gHox/ka+DzbHOrOpKL0b5V6Ld/mepGE +aWHjFrWTu/Rb/j+Z1Wu2MWlWETtGN0/C5P4/5+lbPgmKWTTy7Js8wkD3/wA815uHjfU87GVfaYZy +fcPGmsaF4S0k6lrt6sUEfKqo3PI3Xaqjljz0FfO2sfHDxNrmqSSWvh2bTtJUtsaZczSjHBbHCg+g +Jros6snFbL+v6/4J0ZFgVWl7esvdW3m/8kaem/GbRbdI49Qk8kuflUrj8fbjPWu78O+NPDutkeRd +x7iQcFhyKznSlFX6H0tWi7OUTt7dY5IRIrqygZGDkfnSrKEbzGQEAEjB/I1xSutjzkrto3dLut5B +Dkg8gg9sVoSXCxuGB5yMZGPSlGV0eVWhapYuWtyHOAc+nHFalrcELlhwAB/9erUnc4akDA8YeKtK +0vT5xeXKgMrDAYZ6V+e37QXi+zm1q4j0oqyyht7Y6jJBHH411ZdD22KWmiPpsmUsPh51JbM+cZZN +l07DOd3O4cA+uD719afsg6ky+NJNJnkQtf6Gk8YOBzHIwYAd+Ap9a+zxy5sNL0/yPJqe6p2PPfj1 +pq6X46vlkhI+1kGGQj5R8+SDjn73061wV0wVljKmIxIMFQGV1Pvn1Oen5VOGfNRi2VWWqcSS4WK1 +sPM87DED5CpIPXP1Pb8OvaueSRnlYj5yxAGee/I9uPQ9+taQ3bItdXG3hXyooowF3Zyfc/jX0j8A +vDkdho41ERbHkAYjueKxx8vZ4R+ZUE5VNT1vSIDfavuCnCYBz713at5KhQvRduK+KxVlJRZ0z1Y0 +zBgApxxwc4x/jSJMFYEAnnJwM1zPsYOJZS6VlyATzwfSq90QV8wYI7kHFWnbRkpWZnyQRTYZQenJ +96pzWblSBzhieeeK6IT6MmV07lY2b4ZiCM9TjFQTRmJgp5I4Hp1rrV3qCkkNS4liTHmnOB1P+f8A +Jpw1WSEgSDOe+OaidLm1idFOpbSXU8QG11ISMDjAz/n/ADmlljABIfIyCynoPy+tU721Z9W3Z2Rn +X8iRqSQcg4C9zmup+GzOJgyLkZGMjnqPWscQ/wBw0zeCXOfQPhtixCsmRgYI6+9dQhZQVHqCOK+Y +qv3tNjzMQlztC3K7rdm3AAdRmvI/iIjtYzh1zkHGRgA9s1eG1qKxtgmk2mfMd4qLqkqucNk7cH5T +W1pygq2HB3cEKck/5wa+7qO9NJExVpts24wIoQHbeSQVwckc9Cff/CkzIhIjZgBjIrz5PU64xXUb +G7OiCQY3AZ7j0P1rQs5zGPMVGDKBycZrnnbY3S6M6DRIZ9Tu47S3GHc5JJyFwOf6V6Jp2k3Xhu5t +9T0u5ZbyM7xKq/dOO3tXHX0i4dzOrOMmoS2Z5B8ffhH4x8XeKtJ1DRPD0fk6zbQo17ksDMd33zj5 +f8TmuT+B3hHxT8OPF+sRa/YeSlmipFNIv7mVw/QZ9fSvqstxVOWX8il73Lf7unyPk616ldQgvdvy +v8jc+MfjrX7vUdR0DxP4ikkgWKS4s2MqyBEyMKASMBgP/Ha8x8P2a+L9ctBFZyR29vEFAYY8xlUn +qe2Rg+3euzh/BwpQi6S93f7zXNsRGEZU9rdF067FXW9O1rx14kstFMsQsLWRraB1bKBWbMkox3Yn +dnnt2FdH4a8QaTceItX+F9lc/Z9PudIudM3sSFNxkbWI9tuPqxr6aaShyt9v6+4+aqwSi4JbK/zv +f/M8r8LaS0etjT7u2aaWETKse8KN6g+oOeR09q0bHW7W+1y3tbiOVXFzEkcodVIjGVKlcfMMEcn+ +VcrV3Y6ZJy1uR/EDSW8M6tNYxE4umW4RlG3ahB498Nn8hWf4W1688OapHqCylreX93KhXeGjOARj +IzxnHvWcZ8kjdR54XR12qar4aj06wvtImkfTEhvItWgL5nQzkAHn7y/KmDnqADU/wN8DP8QvFj+J +/EUIj8P6IsbXMjKCr7AAkYzwT8o6euO9Z47FKhhp1Eumnrt+Zlh6U6k1F73/AF/4Y+0vA/hWz1PU +/wDhYmq2gNpCog0S1kHA25w2P7o6/wD669Z8O6TJKTcXSswYlmLdc9a/O6j55xg/sr8XudOY11FT +cXovdXy3f3mH4iS51/xClrEp+zw5AHIGMc/596d418f+GvhZpkdtdzJPqk0ebWyRgGIJ++3Hyrnv ++VbqXsoabs4VQqYuVHB093v+p4fd+O4vEWr/ANp+J9QimlI+WIkBIF9FH+c0X/xJ8HWesaZpV/8A +ZzFqj+QBtyUbHDH24x+IrKClJ8se1/u1Pv1hYYanGlT0SVjG+I+jfD66un02eaOFhbvcuFIDKqnn +j/PSvK/+EN1rTTDfaBfz2xnACKZMk8A4wfTnP0ruw9eThaa0D2KaUlues/C/4m+NtNnTTPErrcws +QqOwIOAcflXusGuR3SqEm3LtyBjrXFiqcYzbhsctfCWam0dJoFyJTmIZ5BIB+bv0rduEfCu4HDZ6 +YOK54+Z4GJjy1bMp6hr1roq+fOxiVVLHceOleHeOf2gvGbzHT/CFgIY2Yp9pmGFJ9h+VVToOtPV2 +XU3wmChU9+pqvzPHNX8QeI/EOqmLxB4+VHEwRokkGCMAn9CSfwrkPFuj+CzLOPt019KsZIkLHByD +z/8AW969aMlRahh1r3Pco0lZ+0dl2PEdV00WEiOiqBMS67j/AA7gP8a92/ZMumh+LGgyyq+64sLq +FQOgwVI/n+tfT1nzYRt9mfLYhLnmkan7U9ikmqrqTQ5e1Z0lI4wGcEE/8CGPxrxu3mWXT7dxCZC6 +SRM5BwCpDcH6MOK58I1LDxS6Dno0+hS1qRUCmORUbbuGB0OBxWcqF3DhjgsrYXp09xjjpXXF2jqR +b3rl23tF1a9jggG5yygg9z/k9K+u/CmnjRPC1tbBFRwoycdT/n+VefmskqMY+ZrRTvc7fwdZiO3N +4wyX55Gea6KaVWbcX6DOT1/SvjsQ+eo2b21sQFgGIz0OefrTGYkgAH04Bqb6kuLHRuT1z7ZPU/5N +OmYlNrHGTmhzMuXUrNhQNowMj8sdf/rUoKbslsHPArSLb1IkrId5YKZMY46HiqVzbIWVGOMDGAeO +neuuEtLmVtTOurWSJMEZBOcryf8AP+FY90Gy8hQ+mSBxXXTtLYFI8fF0qIGVGDrzjaB3PI45pkl2 +pCkhjk9D9BxWVm9z7RPUy9TvUCbmUknltvTvjHp0/Sur+Ft4rSFMbsEYIzx/n/CssTFrDto2pSXP +Zn0d4YJZAVOTgAV1iEcBhk49K+QrtXuebifjZDegCB8DjHfvXlHxBkLWMysQAVxtI61vhnaaijow +K1bPl3V5kXVmCFw3mEswOOcngc1q2DyRqSiFsgZ4HqOtfbzdor0Kim20zfgmjIwQQVPGehHr/Oo2 +mQDcFxkhScfj3rz5XbOyFrbFe4u0hUszZZcgHJ+X2HavUfg58L9V8fQHxBPCn9meeLVCzY8yYnp6 +kDOTVXp0IOtVdkjkzDE/V8O5Ld6L5/1c9A8R6LofhfxLJ4Z0XbKljGhuJdoyZ25IHtjbx7mny3UN +vZG6vJUihixueQgDH49K8P63PGSVWStzLT57GOHpSjQg5vV6/fqee/FH4w614NGnpoD3FwUcbLYn +KyDk4IxwByeccV82fGj4wal4x1yK70y/mj/dFHhhkPlrKSOmODyOoA4r7DI8mp03Ge9737ev6HlY +zG8qbgrPvtf+u4lr4R/4R3Qf7X8f6g/9oatErQWUiCR5EYAqSCCc8g9iOOlddLqWi6LpDeDLaU2u +s6pAwmMbgG0QpkREdmbJyB06V9vCNOkvZxPl3UlVftJO/M7/ACX+eiLXw/0A/bbK02lV0u1kvp5W +6KoBCKM9OOf+BV45oskUnjPUryJwWY3m2Tdkksj7WHPJJx+VKra9vQfPzVJJ+X6nSeDIh4g8baVr +AdEk1S4MVzCXAKzMrfMB1wxweO+favPbmG7sbx5MHzIZGjILcqQcfXrXO2ou7/rY6Iu8nHyX6nqv +h+TQfip4dj0TW7n7Fr2mq5gud3yyJ15BPJ5x2OBn1rz/AFrw9q/h24ZL61EloZAkd3F88UhwSMEc +A4OcHmorQUo80OgYaTjUdORkadaanrGrQ6LogeW7v5PsqIBwyNwQR+R/DNfcnww+F1jaWmm/CnSv +kt7CJNR1+7U4DSZyUP4ce3TtXg53W5acKX/bz+R24WXs5TrP7N/+B+J79BHb3MyxW8HlWluPKto+ +gSJRwP8APeu0KNaacsMSqpZOcDOO1fJYdczc2jyswbXLTb/rqeRfGP4uaR8H9Lf7JHDd+Jr+Mmxt +SNyxjH+ukHZRjgcZI9M18L+KPib4g1PVrnVNWvpbrUrzdJPNIx35J6Y7AY4AxgcCvTwGGeIblL5f +qe/k1NYek8XPd6L0X+b/AEOYvPFOsXkSpc37ymMNtDcnB6/XtUGlRa14i1G3jtUnmmZisL5YncAS +ACO+SPz7V9DTwlOK0SsdVXEzabbZ2vxJ+DfxQ8GW0XiDWre9kWeEM1wGZyFIBIPsOe/5Yqf4TfFx +7fWLXSvFi/bIBH9ntpWYAwljznjnI4yfQVzVsNCth37NWcVoLAY/2k1Jyun1/r8T6CFraIYp4tjK +5EgPQkYrstEvWjXy1bjHI5JGetfJt3Vj6qtH2lNM9P8ABB3sFQjPGBzzmu/msUt7R57h8Rxrv3Mc +ACoTSTZ8PmkuSu0fGHx+/ah0qHULnw54RkS5ktGML3J/1SuCOmfvYwa+fX1/4ifEK9t7VL67kSa6 +EUaxgpEsjn5ASOMnoOfavpcuytqgq1ZXb1sdaxKoJUl03f5nPeJvD/iHwXqXka/FJbyFzhskhueu +abb6k6jcJvMiZfmAHOPQV6LhGpC6Rca8lJNM5/WrmTUJJLtz8rEKoBGFUdv/AK+K9k/Zsu3s/iZ4 +P3HJ2XpLZ6jbn9CtdFVJYWUfJ/kcFRc1SXoek/tMW1vFrOp2M8AYOFuSAC2R93PHPUA/XFfPdvFL +baUi9ViupAr4IOCq9fy6Z7VzYN/uTN6xi/JGBfz+beEICACeuSepP+H5UQCNSZGYjDZABwAPT1zx +/L3rtWisKWh1fwc0W61bx5EyqTAjb3IP4V9d3Nm0kkVmiHbwoG0Z/Ifz9q8bOp2rRguiNcPH3eZn +ZWFutnaRxBs8dx7dKJZcpjbnGMY6V8nJ80mzWOrIhKQ4CEdehHNKpSR8EAHHGCcZ/GhrW6K2QsbF +jgAZ6Hnih5FIIAXPqPrVNNu5m1qRBS2R6Eck/rTXlKjeSQBk4GOtaQVzKSfUU3AVSxIxjORx3rPu +LlGJYr06gYwa64xs7Ix16FOS8QtsZySDjgdapXMgcMSeSMdOfauuCaIdzxaWNQhjxwMEAdTyM81W +uIlSMscYBPXjr3x/ntWafQ+02MPU8xqXZyCQyj6V13wilUzZKkt1BP8ASli1fDysVQac7n054TKr +HGOpwB+FdbGhZgBxx09a+Mq6SODFO02wvI0EDKV3cYGeO1eO/EEYglTcRxnJPU4rXD/Ejpy5tydz +5l1G3cazIW5Utn5s5re02ENDvZDnOPu5xn9On8u9fZ1Je4vQ6IrVpGobUgKN3VvvD096FtWI2Jln +U8Dp1H69RXEnzK5s7rRHPeKL/T9Akkt7u6QXKJvEAYF/ofSvWf2b/jPrFj8LtYGm6aNTv9E1OO5T +TiTFmGb5SUfGCc/lwa65YH65hXd6Nq3zTV/Q8XNcTGVNUl5fLU9x0j4aah4tsD4m0rSrvT9SuR5t +zpl22+RGxksGH3hwea8U+O/j3QfAEUfhnxKk0t280cs1nCMuEDAkMeNuRnr1x0rysJhZVcXCnTWq +fTbTt5djHDZrTq0nGrLVL710Z82/FH4vT+N9eV9E0/7HYJatbxQuSWyc5ZiCOfbke1QaDoml+EdI +j1TWLYXetvKJ7S0C7lQbeHfPUgjOD6d+lfpOXYaWDoRhJ3lp954eNqrFVPd0X6dyG11DVZrhfGWs +3JvtV3FLfzRuSAhupB6sNwIHbGTUuh+GtQ1H4gQXmZLo3c6MtxIMqzSY79yCT+VehThZ28jjnypO +Xb9D2TU7Se5TxrMk0apZ6bKII4HwSrbQOncAMc+/SvmZWdnllgJQ5wW6sG5HBPTqeKyrrVmWGs21 +2t+SLWi3t14f8QaZeR5V7OWKXJwe4POD9RW98TrXTj4rvTok0bR3shvhsOFRZMNsx7EtmueTVtTr +jH95zLt/X5nL2rssUsgYl40yCCQc55/rSQ63qEdg+k28xZXfc6FtynHI4x7VnDWZdRacx6/8DdCt +NBSP4kXfhtxcoxsdORnJE1w3G8Bs9M8496+yPA+nP4X8NHTE064udc1OQXmqTuNpOWysZJ7d6+az +xKtVlKMlbSPpbV/ebe1jGjGEtLu/ql/wbHp+g6XJJHHPfWiwhByobcD7fTpWd8TPiVpngTSzcyIs ++p3OUsbUH75/vMOyjqT+FeLycsFBPVniKE8di1Sh1/pnxt4u8NeJfFslz4gu7+S41PUXLTSsQSCe +ijsFHAA9sV4brXhO+8P+JLaHW1ykzELIQSCcnA717GXVowvCO9tPkfoFbDKMI01pFaHfeJPBdjaf +Z9dj0x7iyuLMWt1FGnz257OAOSP89qr/AAt+G+p+KdTtfCvgdb6aS4v4riS/JeNLNR949ByR39sV +6uDk6tNLp1+R4eNaoc056cv+X6n6War4X0bUNAGlauI7mIW32Zi6g5GzBP418K+JPhZo/hzxxrOl +2GnxNpmohntpsY8qYHcMGvEq4z2TlCLst/uM+FaM6s5c8dNGaumXGoCCFbmPm1AWTPOSDj9a7nRb +mWcKCcbiMnr3/wA/rXjzirXP0CdlG3Q93+GWnmedGVA5XkkjtWR+1Z4v1DQvB8XhrRZvIutXZoWZ +Tz5YHzfTrUwhztRe1z4LEJYjNIU+2v3K58BeIfhVLpupXdhqkxikukWeyunUlX3A7gSe+f512Hwa +8OeIhr+neEfD7Ncwy3dneanJ5YKQCBw4cN2JwB68191Cs6kFFbWv8rGeIjBc05+v6/mdl+1lpOlz +RRTGCNJAxzkY49a+T4554SkSxAKEIOCTkknk88VxYKo5wal3O/2PJRp+hXllhliZJY2YOAU2tjac +8Z4Ocen6ivYvgygsfir8P42jGJI33kYxmUyKMkD0xXo1Y3pSXk/yPPbfM/Q9o/aPgii8W2TS5Kaj +ayROSMnPl7l/9CP44r5y1yL+z7SzhO5S7Sux28hvlUH9P51w4O/sY6C5rxi/L/M48q0kjyuBlgRn +cTjnrxyDRfBo3WKaTBU84UdK9GPxK5EndaH0F+zh4fiSyk1kQhQ2SMjnjIzXu+mxPc6iJDGSE5BI +618tmtTnxEn2OulaNOx0sjqAQSVxz9P8/wBagndWVVAPzdce1eEktxpuyId7HknJyQBjHf0oUndj +CrgY6ZFOz3LTT0BuUBVsjIPTp6UpbaeGBGPp/OnsJpPQikmMY3hSewwf0qCSRmKkOckZIPTtW1JI +wqaFa4u8Rjcw2e/r6Vm3F2qoSB06jJzXdTjpsc7XVFATTzPtjiZyDkYGcVsaX4T1TUn/AHhKKw5X +FbTqxoxbkYy10R4o0KsCsb7ioyNx5H0qjfhUiEYbdlc9OMdD/nisI73Pt9b2ZzmrSo6FSVXuGyMY +9P5V1fwgdWuSnA5yoyQOuarFf7tIujG1Q+ofC4PlqQcnAHvXZwAuoGDzzzXxdWzdzz8W/fYt3ERA +7Hj5R1PSvH/iJABDIGHOwkAnvWmHk3JHRlz9/Q+bb8KdXkUqN24EkjP9K3dNiKIAxOPvYxjI9P8A +69fXVn7iOyHxO5tiGJFA3LhVHA5+n+feuH+NNxr+h3Hh7TvC7Tr/AGpp4uZpYTgmbzWXaCOgUBfx +NTgoQq4mNOotHe/yRjmFWpQoqVPvbudV8L/gObm11LV/iDcW8++JZnjlYGTcWzuz1B5OcfrivbPB +Vx4G8LKdGstGt7e1u4THJuZYVwAPmLt24BzjtXsV6s68XGhpGLX4a2Pma0dXz38vXR7b+hj/ABT/ +AGztY8CaS/gj4Nm0+1JEq6jrs6bwG2gFYi/3gDwDjHfnrXydor33xT1LVdO8Ua2k+ta3Mlxb3tzI +ZJZZ1P3dx9QcAewFd/D+UxwqeIqv35bK1rR7W6X3Z4tWPI51I7vV/wCXol6m1ongvwj4Q1+LT73S +dZ1/xAJtkdqIvIhDDuSck89+lc58UPFWonxFJpWkwJZGBTFdGAEBpsnIDHqB09yG9a+lk3GyirL8 +TKEpSlq+mxo+FbV7PTPDYE6TpfT3n2ksAyq6CMJyenLdfeun8Kagg8aW+n3bEzabcLP5W4BdpHbH +UYJOexzVxs9f62JqTcoSj11/U9Fs7DT9GPja/eY3Ntd28cNtGo+YqDHG4A6knDH8a8C+InhCLwzA +b26iNnHe3T/2dbgjzJow53yup5AxgAf5OOIje76f1/wDPC1HGbT3dkvlFX/U4Z2uXuWu5SwTzM9C +q7j9P88VeN8yGSVlV2kUxBn6gfh0rzmrHsx95+hXuGhs4HBiQmRSFwDj6ZHHIz29ORVr4b+E9R8e +eM7DQtPjO12HnSHkRRD7zZ7cdPr+NS6vsqcqr6JsiUedqL6n3R8KPDWiar4lOoy2qHw34MjWKyi2 +ACe4H8fuSR+gr27QdMa8vri9mUiS6kLuD05PT8K+ExE3VlFP1fzNMwl7CU4r7KUfnu/xsRfFf4n6 +L8M9HUyMs+o3eY7KzDYaVuhY+iDufwr5zt59a8UX02v6/dG6vrptxdvuqueEQfwgdqTvKV16L+v6 +6ndwrgLU5Y2otXovTr/XkdBpWnLazSKYwVxhQOo5yD+RzWX4p8C6Z4gjEptI2uEYBCw5Bz1p0pyp +y5kz6mrab1Mu20u+8NzCwlX7bFMWZ1nQYjj4+UHr+ef8O18AfEBfD9g99p/hpLQAOXjiClnCkjIz +jrg12rEVXFwpysnbS552YYCji6fNU3/A7/T/AI0P4nR9Olsbu1thbJM8vyruVjggEZ9R0rkPFnh3 +RpLRZo9VdlSTzlgCgkn3PXPP865qlKMVed3J+f8AwEjiy2E8uq+zpJOPV67/ANeRwTw/a7nzYF2k +HDEj/OT/AI1qaW6i7i3lcE8r/XPauXlcbH17acWl0X6H0p8GblHKQgAErnAHHpXLftHeB7PxZqUQ +v9QmtRbRlomjGRnOc/lW1Lljaclex+dTlOjnN472e54pd6Fpdnpktnr1yNVgtlxF5i5fA65/KrGm +fEjw34C0G6bQ/DckTiEs6w2y5YAgYzkZPf3r16eOqSpulSXuvTpf09D1MTlsK9pT020vp67HgnxS +8e698TZXNlYvAmFJM2FIQ8gqB7GvONd0W20q4t4kfzCyg7wDk9s1thX7G1OT1d7nXVpqSXJtFWMG +3EExnARt/mqoO3AIweDnv0xXo/guRrX4qeDYnjQeSbSM/NzkMQf1r2pWkrLs/wAj56zjJo+i/wBp +uy3afoniLyf+PeGOZueAdpBPtwP1r5b+IDhLhrRyzIsEbRIuMhtuCScepz+NedgG3TgmKmly6dL/ +AJnFiOR5Ioy5ZnYna3HH0x2/wrTttOj1bWbbTmnkCO6xyGNQzAE9ApxyPcjOK9Buzv2DVxsj60+H +mjL4c8KW9oY2B2rjnkjAr0bw3bPHAbhhyTjJPJ/yK+Pxs1Kcpd2dVrQsi+zcFWJ3fTkVXZnKk/eO +ScZ7V5iSuUthkTkFVkPIPcGrV1LbyPE0O8vtxISMDd7f571o0tUQ7txZDHIpUAMc9yTxUUrlQSHJ +HTjoaVnfQpNXuUprlhHkE9cbe1Up7wMNrsN5GCM/WumlHUiexWSaSQFEUs5PAxn/ACMVq6R4K1DV +JAbiMpH6DqT7mt6taOGi5nM33PQNG8C2doikwLxjIxXTWmlWto4AiHHPSvm6+MnWe5g30R8OXN4I +hsLN/dODj3rHv78AbD/CMjgEV9VTjroj7ad76nPaxeNDBtUA8ZALYP0/z611PwWu3lviko2sTkkH +OcU8VG+FlYqg7Vbs+sPCjkQqMZPB69PT+tdvbAlQw6jCgHkCvisQrvQ4cXpNktyT5DAduSMcHivI +fiDgwSlgfukcfSlSdpWOjLfjPmLUwW1t2csNxxz/AHc//W/Wt/SiSMDIGDgbuT7f59a+uqv3F6Ho +RTcrrY3W80oF3NgDPHT1612Pg680lrWGz8QW0YW2YyQ3UkKtiM/eU565IyPcGsaCqOacN1/wV/wT +PHwp1MO4/wCf6dxvi/4j6HpMU95oGnRWzAFI7qWPzJJWPAVEP19PWvCJofEGsXcviHxP9ts7eMGU +z3BYPIpBOxc9vYe9fX5bhpuLq1dWtPJeh8djpKnJRT1f4+Xp/TPPPGOsS+INSiNoNkLqEVMbdq5H +8PQH8eeM1s6T8PtYk1wppBZJrGCOVJG+ULJwS2e3zZ5r36ELJWPNnJWalt/wx7Pd/EiPQZNM0/xH +pi6jrz2yxreQxBnmDNkZ6YJHf0IzivJfjB4it11WHSoNOtbd4WaYiEnzC7DB3HHPOcD61tUqycVF +HBhqLpzu37v6dPzM3wlFqd14ebT7eCSSSwEtzGwJIjJC7lBHfgZ/GvTvCVlB8RVm1jw40Vp4igtV +tL6KY7QqkjLrj/dP0z71UNrPT+rmmIlGmuZ7Lc3NK8XNoF9/wjeoNFqjWFu7zLBEHd2yFSNevzlt +gP1J9a8v+MSyW/ie3uPGVncRa/cWaSyQQ3GVtQT+7Q5BCEqGJUDuPWsMQ21fddP6+8ihGEa67tae +nX9EeaBpY98jKeoLNgA/4AU+3KyK8eBlcsvIxxnjn6V51m2ezflTK2pRXMiKCd3z9CCO36V9JfBf +wgfhz4CGpS25OveKR5cCBfmitjx+GcnH1PpXm5zN0sMqS3m7fJas2y6McRiFfZH1n4F8GQ6L4b0/ +SIYtkkRE10SM75iOQfpwPrmui8feOPDfwa8GXHivXZA8rkx2lsjDfczkZWNfyJJ7DJr5Fc0pu270 +X5Hm4+csXWVGG8n+b/RHx4ur6/8AELX5fGfimcT3lwwKxrnZAn8MaDsoH+ea9G0KJY44y0YIGAAB +gqMHANVK0Zcq6H6XRoRw2GjShokrHZwWkci4RBuzgk9fSr0mgRylZGJ3scqR+P8An8ah6rU4J1HB +la58LXTS7pkTDqFDMAeKSx8FKcny0wo+Zdn6U42VrMznjYqDsbFpoFnYrHFGEztCgcbVX0NZutwW +9lYSSqi+bLwpznaCT+XStXUTRyU5OpNJdTibewEELTOgXeT3zkk1RG5JA5BBU4AX0/z/ACrFyTkf +U0bO59D/AAcuWDwlerIvzZ9B3xXXfEvTob6YNMoIaPg9s/5/nW6ty3PzLNJOGacyPCNf8P2ryurw +7CCRkgYPpXD6zpTLJNDtUIy7ScdvX61nzSWzPtMHUVWCTOCn8L2lrMzgNlIxFuwT8qnjn/PSvK/i +NYRW97CTtwEfacEZwMDnFduEcpVYtl4mChGVjzjS7QGQow5EzueecDjP6V23ha7jj+JXhSRpSzia +2DZPcyjPXr1H619UpLma8n+R8pVT3Prn9oa2eb4YeeRmOCwlBLLnBDcfoTXxZ4plFxqVnGZRK8tp +AzEfeIK7CPfoD+XevOwGlJeVzGnrF+rMHTZoo7w3Kw58lcYJ3A/LXSfCzTpNb8cWpO4ojlyME4Hp +7dT0xXdVlyqcuyHBNtH18YEkENqmeNq49/8AOa7a2QwWscJUDC5wRn9fxr4rEe8tTqlskMkIRmLk +NuOCM4wagYkty33uvNYLXYWyF3E4dc4Y5GBUYI3FAxPf5ePwp7u7ErWshDKoPIOf8n/Cq0kzKSzM +OeR6/lVqOgk1dopTSBVxIRtBPHTHtVGMXV/crbWkQaRmAX26fpXVTslzMxk0mz07wd8PI0C3F6Ga +QgEk9j7V39tpFtYxhUQYGOgr5rMsZ7abUdjknNylYkfaB8uAPQUwruYEj8681O6C2p+e5uYXhcs0 +hdcEZYYxnn+nSsqWdZFcDccAkkt+v51+ixg0fYOTk2c/rErSRk7iduScNnr+Fdn8FmMl6JDIQVbg +ZzRi4v6rJmlCVqyR9beElAhVSDkAA5P412sBATnjAz6ccV8JW3ObEu87k10cwMzNgEZyeM15H8QS +xtZWzt+VhnOefpU4de8joy9rmPmDVZA2sOxDEBuqjkjmug0SC7vpBDboxdiAob+XP0r7Nw51Feh2 +KSjeT2Vzv9L8PaVCgbXNaWOb7qwW673J9M9BW1PbeA7RM30F9LbWwErtvCg++B/LivZy2GHp3dKP +PJd9F8u54eZ4jFTtGDUIvq9X8+xwnjL45WA1WDSPB/gWzla0jVVvr6IoinJPA46Z6nkntXmXxE+I +niDxZcGz1GeJYY1BlRIwkat1wFHPGepP5V9LSdT2cVPTy/zPknQl7d1Kj5n+HyMDQtIhu7+CeS3V +ILSUS3M5XChF6kMT64HFeseG4tTvH1HU9P08XD6rMkdtGw2oyDksR2RRjPrkV2Uou1mRippR1f8A +V7/oVPGl9pHw+jg1i7kS81y4ikSGZRuRCCctz0+8MdPUV88au1/qOpTapeXCy3U773I6L7c9P/rV +z1al5abFUE5x52t/yR0ngrxpqnhfURJbPttnz50RAcMCOfbv/wDqr0zTtS8Cyyx3GsbtKuLmcPa3 +UTGRJPmGBlR/D0KnkY71pGtGMW56oVaEm247/mWNZ+OmleBNVn0rS/DVlq+vLwusyoIiWBJU7CPm +IzwRjtWg/wAP7HxN4Uh8aa3OZtYvWM1/NcMSWkJJYew9B2wK8vMsdL2cZp77eheX4PkqyqT16ei6 +I8I1yK3stZu4rUyLbsP3SOMcY689jgn6VmAiIkq5B4ALYH0J9K0gr2b7HVUlq0dn8HPBT+PvHVlZ +3QVtLtpBc3shBCrGvOTgcZ/x619i/DrSm8UePG1+WEjTtKjU2cIX5Bj5Yl/EnJ+hr57Paq+sKP8A +JG/zf/AR1YJ+yw9Wp3Vl89D6DjbSvDejXeva7fxW1hp0T3V5cSMAoAG4kn86/PL4mfGfVfj18TH1 +MLJBodg7waRaM2AkWfvkHje2Mn8B258rL6PNzVekV+L/AOBc5cnj7fH+0lsv6/r1PQ/DNm0FnAQu +CBzz/P1rtdJIU7SQBgAj1I4/rXA5rmufpzV4HaadJtCoMHGQxHXt3rqLNFliUNglRlCemKhs8TFq +2pqtAHiR/L3gclWPbPaka1iUEQuEyMDHIpppKzPH5mtiN4ooINzhckdSck9fyrkdeQSs+G3qSWb0 +ApudzrwabnzHM3tvGtvsUhtvRuh6f/Wrn5YxtBD4GDux9QQMfhSk09j6fCt2uz2v4J3TG5jiJwrD +k9zyK9b+IERfT1nVOVQYJHeupP8Ads/OM9Sjmq8zxTXGW7VuCrAk7uDnHtXAaqrJMwbJHTJOOtc+ +snqfWZUko8pzV7Cro7KOSCAo9MYrw/4uiOK8ghUxgsxGd2DgHPX8K7sAv9pijux65abZ5ppMCPGr +Y5muVTaB1G7kZPrx7c1oJO1n8QNBmcgm2msxtwOR8pI9R1r6yOtV+j/I+Pk3yq591fE6zOv/AA6v +NHjfLyafNMi4wfp+Vfnze3iHV7Z5pVZY7UQFdoGDg+v+17V5mWu8JLs/zMoK10itG/lWTyuSWZtv +BIxjt0r2v9mzQo57i51eSMEBgE+UdB/9eurHT5cPORVKNpWR9G6TbG51VS4yqDdx0J9K6ucELtB4 +wAefY18bWbbSNalk0kVZFYozMoPQgE8YqI8rkKFA5JPpnv8AiaIpdCbtqw0OpBYrjBGADmoHcqzA +cAj+E/TrTsm7MWqRC7/KWcEkjI71TuGaJcKFIHOTzW8Vcnm6sz3czSiGNWJ4AAr1LwB4MS2iS8uY +8yONxJ9a58xrLDUOXqzCo7q6PTbdIoIgiKAaSfLkgjp15r4+U7t3OZKz1Kjxl2weePyqzFZuxBCj +GPWt6UHLVCnNJH5mTXQJygOMYIA2kDP/ANeqsk0sYLouCVween+Ffpig3ofW+0Xcx9UuUaIlguME +cn/PNdx8FJFOqAgE7+TtOccn9azxythZI1wfvVkfXfhR2SNFZiDgDOO/9a7KKdRHvYckDj1NfBV4 +8smZ4q7ndD7ictGxb6g57dq8q8fKGtpwzckHOegwD6GlRaUl6nTl6tJpHzBqjhtdckqSpwNxxnnt +69a6LSmltlRnjaMOMqwGA30Pb14r7Nwfs07bI1cvece50VhcBGV1J+XBG5u/+f51V1DQ/EvjTXL0 +WiS2WmW1snmXjvsQNk/Kp75HU+lehkNOVau5PSK1bODPqlPD4X2k3rsvmc5qllAt9/YWl6l/at+Q +TdXkAHkwRqfmCnnLcEZ9awb7wXYa14guVsroW+madK0l3cTkbVbr8zdCfb6/SvrrqU01sfJQny0n +OejfT9DH8U+JIJ7L/hHvC9k0elRSE3E5A3XBX5uw4Hy5x7V6h4W8SW178OILvRJJLddPna2v1BAk +kiPO/PbJB4FdKfNB8yPMrxfKm+r1/T9Dx3xLE9guo+GpIne4s71pC8pznau1CBnIBDZJzzhcY5rk +Y7dzG91d5YggMO3zA8+vY1wVdHbsenR1hfuM3RRq6oTiRM9ycEc/5/nWvbyaq3h+eaz2vp1kENyx +ICCQudrICM7uR0+nQVk22t7BJ2ab6md4la21bX7XU45GjtbtEmkdUywbGG47nOfzr6q8KanpMOn6 +Pouu7fsOpXaLLMyHYCyrtyewJAz7E+teNjb+whp8Kb+7oenCDk5qD1e33Hin7Q3w48ReDPFk+oz2 +wl06/cyJPtBEXYJkZ24GK8gF1cOsiRjJkI5HQgZ/zzXo4GrGvQhUTOCok5uPc+q/g94bfwP8OLaN +go1bxIPOl3J8yW4xtHtnP86+xvhZ4PfQ/Ctjp5tdtzcBb25JHIkZfkX6KpHHua+Qxlf6zVqVE93+ +C/4Y6swf1XBQi9Lu/wAkv+GPlf8Abi+Nour2P4G+GNQY29tIs2tSxZ/fXGQUgyOqrwSMHnA6g18/ +/D6GO31gQOd3lyFASfmHOOPY169GgsPly7y1/wAvwJ4fT9om+uv3/wBWPonR2DW8TKu4DgrjnoOf +fvXS2MYRt0BO5mJx/d6dq+Vk9dT9JXwnT2EswjVUbqdxLeua6fSr94iIwpJJAJ7VDv0PKxdOMk0d +LaXYki+YEEKTg/l/MVJeSK8fmKAh24baPpzTu7JHgSp2qaGbfXBSNtrMcrjJPT2/SuQ1i6dWwBuA +OS3oKzi/ePSwdPXUw7m8EkGehySwPr/k1z5n8y6y4yo6frz/AD/StG9bHu0I2TPVPhRfR2N/byO/ +GQOuMDvivfPG4Nx4ZkuM52pu98V3Q+Bo/POJItZhTqeZ4LfyRqpdTnPJOMgHtXIatGXQuBwxwpx1 +PH+Nc8XfVH0+XtxabOWvn2B2Ixz6nsa+cPi3qSDWGLNnyl2plckse35D9K9HK4c2KuduaT5aDOJ0 +kSG5s4fKY7Cu4gdCee/1p/im68jx0ZQ3yxXKMADxjI9Pwr6mGta3kz5RWUUn5H6CTJBNY6DdO5ki +nsJI8EZ4dFPzfka/PLxppb6D4z1LTbiFv3N7LChHAwJM8DuMN2rzMqbc5x8v8zn5rRv/AF1HavEr +XL+UyDewk4XgE+lfUPwP0H+wvB1vKxCvMuTx6jJ/z9KjNpOOGjHuzpw9m2z2fwnp6S2s2oGaMH5v +lc4YgYwB68Z/I+2bNzmRiQ2MkAcYr5Wp8diG+abbWxDIRgANkZqs5KtjB6fdI49a0j5AtiFpN2Ap +PYnBqN5lDMCDggLnHP8AOtrWWgru6ZC0jBCCgweR04x0rMvbgqdpC9OoOB1raG1iHudF8OvDUuqX +/wBvnXMYb5CR+te5WdtHa24VVx+PSvm86ruVXkXQxq6tJDww3bd3fpUiRmVhtXP1rxoXk1Ywn7qu +y5Dp4A3Mfz9KtGKOPoMcV6VGPLa559So5bH5XyqM7gCqdcDIx29ar3DokbKshICg7TnnvX6VCzR9 +hNu9jnNXmYxFfMw3I5bt+Vd78Cpo5b4qo3MWOWB47/rWeYr/AGSVjowP8dH2B4VLvEjB856FTmut +YllU8ngduQe1fntVK7ZpiV75LcEPasFTG4D868t8dgpbTjGBtJPGaxoW59Try7R2PlbXJH/tmd8b +TuzxngE8/wCT7V6tb6W3izw3pFxpF3GBaL5F1ESA0ecfPjqRX6FRcJQUJuya/HdfeY4l+zlGqtov +X0tY6exm8J6DMtlpdvDql9yJLy7OIozj+Ferf/Wrxz4w+IPF3ibxxb+HLTV2tdPaNESIOYoHZmAB +Kj0Jr28HTjGSglaKV7enV93+R8/i6dTEy9rW1fTsvT9WdTaxaH4C0H/hCrJRNqV6vlXV6n/LvEgw +8g9eeAO9eY+Nb/Vr+xs/DmlQC10eSRvssMUqtJcyfKPOmKknPPfgZI7GvXpLnld7M8SbTkr/ANPp +9y/M1/8AhHbWx8HTRtKYm0WykMk6pnz7yZlXaDxnamefQCvTfCGiWtn4WsvBthaK1xe6bJNdyAHc +0zKXBx6gNjr2r0klytI8uvVnZcz2bf3K/wCp5F8V4IJodD8aSXUSTahZm1vhGQWFzb/KQcHOSNpr +z7UZ0eyma2VgjxRYbk7iByefr+tePVep7GG+BLtdfc7foc7aPd3F3AihSzspzIwHT3Nep+B/CWnX +3hW+kfUVaSMiV7aU4JTAOQvQjp+Vefj6sqVG8V1R6GDoxqVLTE8JeEU8Sa3JLHpzraJtW0ZwREGB +G8nHBxxwPWvqXUfh3ouvfA65u9LvVuJoIZCJYjk+cjEEHHQ8dPpXk5jW9lCnF73X3bv73+R1uTpz +jKK0Tt83dflf8DwG4+L1trvwF1rw54oeG4u45dsRnBaUztnkfQqM9q8g+EPhW48f+O9O0OZ2WzEg +mvHB6RKcsT/L8a6sJBZfh68vspya/wCActf360XFavX8j7k+H3h2Lxp8QLSKK136dYqVVAOFgjOF +B44zxx716n+0n8eNO+A/gSTUbcxS+ItU3waVa7hkvjmVh/cTI+pwO/HzdOlOtKFGO8v6/DU5M7ft +K9PDvotf1/BH5aW99f614nXUdUuWmu7+9864lkYlpJHfLEnuSTz9a9J0qCax8T3aHKp57LsbjknI +x+lfT5jaEFBbWPZyeKVS7PcfDhZwqo56EKc/59q6y1kDYMYzuIAPQj/OK+Jqas+6jsdDp0zh9ueQ +MknoeDxXQ2k8R2EEYJJB6UuhwYmN3obVpqLQuYpHJUrjJP05q2t2JE2u4bcM57Yz/Os7pbHjVKdn +dFO7mEisyjI25+9xnpXEeIJVb5VYAAnOeanW9zuwatJHPvORG4UkEkggHkisppSLgFScAAgH/GtW +j2qSSPRvhzeKl6kszZyR1HTmvqGOFdb8IyggbXiZB+VdtJ3R+ecWJwrQqdmfON7KAgTy9rAshBOe +QcVy+pEhc7sYBxnvzWEbp2Z9LgrW0OQ166W1tXlblhn5T9c/hXyh471B9Q8SSxRu2Q5LkKPXpntx +Xt5FByryl2RGezUcPyrqTaJFHP5NyCyMsjvj+9gcfyNYvjdoW8ZyOEP70wsMAAglFOT+Jr3aL/2m +3kzwGrU0z718LXB1nwL4YvTIwXbFE+TjG5Cg/IkV8c/Hi2a0+KzWqREpMBO4JPJYDOef9kflXmZb +aNeSXZnNVbXuvv8Ar/wTmNCtH8Q+I9PtFiJjecZOMHAJPb/PWvtPSLJbDSLWzQ8iMcDpnAwKwzyV +vZw7HXhdYtnfWEf2ayhhUdBjI6dMfzqKeVFk2FeW5AzkfnXyt7zbJUbtkMgXbjC5JPGcCq7ID84B +x3C10wd1qQ7rYrlQQWJPXJPvULblfcG6j8xx6VuiL30KbyMQ5BXHGTnA9apwW0upX8drGrDe2Djt +WyfLFvsGjlZnvfg3QotL06NVQAhRk4roJDuO1V796+DxU3VquTZzt+82OghaVwoPf8xWxbWSx4LC +tMPTtqzixNS2hbYKIyqjoKqNHI0nBPJzXpJNtM4Ys/Le4hcrtfGwkcA9fbms+4WOMMVVix4JU89x ++eK/QYzsj7ucebY5DWxKMySJyuByDyM9P1/Wu4+ALStqTkrkbmyx9PTP5Use74OTRrg0o4hLyPs/ +wgGa2jz1AAGK7KIbVwBjgjnrX59U1dmXire0ZLKi/Z23ZBx69q8t+IKgW0qArjpya56S99HVlz9+ +58s6nZ3d74ie2srN5S0mMBCx69a9E0rw2fDVpDc6zqDxSsAVtInIcjGfw4r9EpUlGnGpU2/NmVab +5+SO/wCXma+narMhkle1hZMkoWT5k9g1eSa1err/AI8OpXoXMMxW0UcrlBnLZBHVT09PrXu4CtOv +PmfZW+Z4mNw8cPF8r3bN6KG4/sC98R66pe4nkENon8Tx7zs4PIJxk+3PpXHXeprpxu75YoZr+YIk +sqAFYlJAEcajOMHHPvXvU5KLUWfPStJt9L2/I2PH2oXPhqDw94FhuVaSWJm1KRlDAzTbSR/wEEYJ +zjNen/D+Y6Z8T30ieXeG062kgBOMjaAwHvtPStb/ALuV3/Wx5VdKVFvum/va/Q8b8Z6Kl5p3jfw0 +NxuvD+pjVrf5SD5ZPlzDjoMOh/CvO7PTmSBLu/cW1qRiQ43NIc5wo7DA6/8A6q8+tFatnr0Hq2u/ +5pP9TPud0F3bmO3WGG4JRJpFJbZkAseOlex+FNJu9b0lr469o1jbabpzo7STJFJcSgNsHzckMiYB +5wfrXl4yvCnR5p7eXqehSi+dNLVHfeGfEfhDXfBFpoXhbxAbG9sA0ssNxaeYryHIYoyZPAC9cdM1 +5Fq3xIt/DOh3eh+H/EOtpfXFwzXRWdoIH5PAjHQc45645rxsJhZ1Ks1iYNu99dVbpb9e2x3YmtFU +lThbd3trf5dH/loea6da6hrt3a+HNMiEt/q9ykUSA8l2bAH1OT+FfXngj4Bar8L9Pnu9MiS91W8t +BFcSQntnLhRjpgkDHpXXnFSNOgqN7c/5HFhqijXUpq6SPbPhHqGp+HNB1I2fh+W11SZisl3dqEt4 +UGdvJOW9cewr4h/ag8cXvjz4tXl9Nrraj9jSOzgVUXy0jVRkJhjuySx7ck15+VUksbKUndpaW6eb +8/IwqxjiK866+/p0089jz7w3AD4i00ttJ+2wgrgkkEg5BxjA6Zz3Fet6pbtZ+L58YAmdWjAPGMYz +19q9DM23b0Pbymyqs9R8MxyG2iBJy+DhuT/k+ldfayHCkj5SSQfavjam+h9tC9jasSSwxJgZDFew +4P8A9etu2mRxtOQeFUA9sVN9Dnrov27OQGYgqDj5jj6VfinJQx446kf59qTelkeXVSuV9QmAhLIG +C8jAxxXn/i++ktLcMsLZdyvJ569KaWp04NXkkyHR7aR7UXMrZZhySKbf6MY4PNV8oMEgjpTdj0ub +lnZI6LwLdxPfRxxscEgMScYr6y8FTxDwpJbSygsqkgH0renUik7nw3GFN8sdNbo+bNauWOtaikZz +Et5MF45++e9cxrNyCxdQcKNv4en+fepi30PewUFyx9EeX/E3XotI8P3M8zZwp2AHDM3OPwr5XSY3 +l891M7MZCXJI56/TgdK+pyKny0pVH10PJz2rzVI0101Ou8PnNkhmYFghKYAHzHgduT/OuZ8WK02t +wuq7ikojLAfMSNvX/Pauyl/vLa8zidvZI+2PgNqT698JNPnaQ7raYNgnOCjscc+6j868J/aq0i3t +vE9trNsgG61ZN59VOVXpkEhm/SvNwv7vGuK80c1S8nJ+ZzX7OmirrniN5WG8Wpjlxt55yD+HP8q+ +vYrVXureFCfmcYH+NcOfT/2pQ8jswl/YqR0sz4GFU/KOORVKdipBPU9GBHQ14SSa9TKJCZHGGQ9M +gjGaSR0dsSOBkHlRj/PWtY9kJ23IyPm2kk5wTkdPY1XcKV3IyqwIwOeRg+3rWy0djPpcyr2Vo1cg +HIwTg8fjmuu+F+hC6vftsqNjcQCewqMbP2WGlIcrKLaPa1jSGFUQYwMkYpFj3PgA5I+uK+IXvTuz +k2VzYsbZIkDMo6ZqxLIcEAdOhr0YJxikjy6j5p3YiFmGRye5pzAdccdMiu6kro527M/K+ed3ZJSB +u4IwOMjPaqVyEaMlivOQFI4yf519wtD9EVNNXRz97YvcROjKCCMYPfnpj1r0v4GaCYHDE9GJ46cm +px0/9mlA0w0f33N2Pq3w1A1vGEHQKO9dVGAQoY5J7AV8RUST0IxDvO5bbP2cgA5I9a8w8fqpWQu2 +Qcnk9+M/yrKhpUV9rnRgPj0PmjWte1Gy1mS30u4a3D5V2UgM/Pc9au6fLc3L+fdSSyMwyWc5Yk57 +19tVqKVOLXY0hTUajvuzpXubiy0S7dIQ4SFzkg8fKecjv3/xrzW1ski16G+mKiY2bXDoG+VCSMDH +/AjnjNfRZS3GCb6niZolzS8tvX+mdJr+v6APBlsq3m+8eVxMWG1UIUZVc+g7/hXMfA/R11PXNT8f +6/ZK2iWSGOCOcjEs4H7tffBAY59vWvcoyk+abX9f8E+VxV6dFxi9Xp97/QyvFqTeJrK78X348mQ6 +jHGuQS4TJ8xyPqeg9PavVtDmK+JfDPiSaLbIbaBw5PDARksOvOcV1RS5OV9jnrpfCtrNGz4i0S3t +/j1Fe2VnF/ZfjjRpo3DL8rNJF0Of9sLjjqa+VbeTT7bXZdG1hpFjtrmeCVVJbYQxGQPzx9K82u3a +6Wtr/gXl8rtX6xj9+qf5G34h8J69qnhK08UabpjyaPpzvF9pIA37pCBntkfp61zlhrUFwYtK1xQk +GQiywr88Y5x3569K4sI41YuD15W0/wA7HqV/dnzHsV3ZeGfhb8KTdQ3Ulp4z1KV1t5lcn/RDtIYq +TxkZ5rx27sNU1GeS/v2lvbmdgWZVLuzP0zjpnmkvjlKS6tL0/r8hQfNTvF3Tu/PTQ9T/AGXPBM6f +FO08Y+KbJre00pXlhWdQDLOwKKB/u5J/AV+gmjS+H72CJBcxK2TvV3HTAA+g68V8zn2Ii8QorWKS +X9feS6FZJ1Io+XP2uf2h7rQL/wD4Vv4F1OCQsqyX93DIr+Xyw8kYHDcZPccdK+Ozb3kl19rvJHZm +Idnc8nJ69ea9PKsNGhh/adZamtLmdNKXXU2NAjJ8TaW0OWH2yEAMQQoLLx79a9r1jTY18Vxh1G54 +9wJUAgkscfSozV2in5Hu5T/vFvU7vQFlhiijIGeduDz1x/n8a6W1Z2G12+YHOD+AxXxsm+a6Pt4R +srs3LJiUVAVGeST0JH/6q2rchTgk/MBtbHTA/wAind2OWuWkdC21CoZSD97GBV+JlycP83K8egp3 +0uedUTC5QPFICoLYxj8a4vxVphubQuFZ/LYOBkjkYFEHrYrCyUZpvucv4hm1250J7bwrMltfsMI7 +qCE9eD3rnNGi+Kem6YX1vUIL2QAgqyBcLnpkDmtKUaLpv2j9+/4eh6M1VVVWV4/qdH4Z1q7S4WQ2 +r2sokCugOcjPBHrX05pHia+g8HrKiyQTzR7YzIMEDuaXs5Ru3t3PC4ipwrU6d92zy3UEFvNIxJdS +Sd3qSc81zWqzbxt8wAbcnGCMDmrS00OjDW5UfL3xw8Syavrg0O0mzDagb8E/M57fl/OvN7KPZLKA +mTHHgjPuB1/Gvustp+xwkV5X+8+SzKqquKavsdbZ27Q6SpVHBkkjjYqSSMMSePwrntfgEmq3yhsM +jmcHP90ZH51zU5P2rf8AXQ6pL3LLyPqf9jPV1vPAeo6YxG6znlOOvXBH0/i/OuN/aes5H8O6ZqjR +r5iTsZQG5+VihHv/AA/pXJtmTXn+ZwuyTt/WjLn7MPhOPTbG61faSLg5RznJQgY69/8A69fQOmR7 +r5pdvCqcYPevBzWr7XGya6HoQiqdC3kjQuGY87fYAcc1TlbeSAWCgHoetcUWrHKl2Ggux+YDGc8i +opGdzgMQepIHBFbJWE3FkLySKm0A8HA+tQTHKlWOSRycYHrVR0loK11ZGVeKZJBEvALbVwO/pXtv +w60sWmmRAjG0Ae+K4c5qKGHUe4pfA2ztHUOen/1+au2NpgFyOnrXy1GLlLU4asuWFi6I2AG3ipI4 +g5IJ69/evWpx0seVOQ9Y1XpgYPWmyYLbVJrpTtoY2bdz8pZXEYRA8e8kgZyT+YHvUcqQxxkFlZmJ ++YL16/lX2i6NM/SYyb0ZmW8lvFcrBnLPgknt/nFe6/CixSFgduAzA5xwM1ljf4dkVRbUmz33RlVI +1H8PBzg+lbluGYjLEZ/WvjK7tLQid27s00DrA3ACkc4rzPx4hMUxVhyCM9qxpX59DfAte01PlTxG +F/t9y7fx9z1B7flWvpm/CBcckZII68jH8q+0cW6cTbmXtWeh6bof9raFPcanKlpYwwHEhIAJ9vrX +zv4am1JPGOpC6ufNUiZQ0hBOQc85PGB27Yr6PJldSUt9DwM4kr+6a1l4E1Xx9c20DSra6U0zS3Vw +W+SOMFmcg9yen4io/HXjSMSWvhHwtILfQbHbGgyFaUA4LMe+SP0r3WuW0E/Nnzc5KVWyWi/P/hi1 +FcWWoXiwag6tbz20keFYf68ggMR0GSwJ/wD1V6Npltp8uoackNyLg6LbokaO4JJ2HGfTJBH5V1xk +lZo5MTzJ2S0SZ0XhfWF1fQdOvdaby59D1ubTwyjLxxyjK8+gY8fSvDPjF4CudF+JN3q1jEDbam7S +MFA+RzkPxnk5ya48RF6xXn+DDBvlxHKtv+Df9T0j4V+J9P8AD/wnvvCXiPSobryZXkFs7AMSMvkd +sgkHHfHtx88WOi2ejau/iDWlaWxt5xKLZ2AadyNwRhngZ657A18/l1KeHxVeT2k0169f69T3senO +jFxev5eZ6l4X8Iar8ZtPm1jXZJGSC4DACLYcH/lkjc/KABwO9fQnw8+CHnSrJq0UUVqQA5AG51HQ +t6YwB+NRmGIdJOMnt+JjGpChTc4rWxzXiHWNF1nxUmi+DUgs7KGZrS0dT8053YecnvuIwPbmu78f ++NdP/Zz+Ek8808Fx438UKItOjmcO1tGRzOQTxt7erbR2NeHCnKrOMb+9Jr5Lr9yTNcwcoYanhpJ3 +k9fO2r/yPgv+zpbqT+0Li5a4mdy7sWV2Y5ySeck9a3br7fe6elvOZmSNtpwmMjA4OOvTj0x2r62q +lH3Y7GNNKTTktU+pS8OW7ReJNPG2byvtUDujISpwwHOfpXvniKGSfXYbhFJQMQuVwPuIcfnn868j +NYvlXoe3lUl9aWx1ulRF41YKRgg8f54rat1lUhghI5BI6/8A16+OnFpn3UZJrU1bOKRk6gjkZxyf +etaOYqApf5xwPpjFLaxjWtIuWzGQ7VC8n72fxrTjKh2bO0t1OKu2p51XsWGwVGGyNoG7v/8AqrPu +ooJUIC98MD/T60kjni2ndGBfaPBI6uiAMMgEDHb610vhv4aDXrC4E5basZIIbPOOKLRk1odGKzJ4 +TD866HX/AA28HaPY205n0qBpos7XdAW4OO9a3jALDbKQpVcfKo4FdFScpxSeyPka1aVfMXKTv/wx +5TqU5YPj5tuQxPpXnXj7xDF4b8P3mq3LeXsjOwE/eY/dHvzWlKm6s1T7s+l5vY0nJ9D5CvZ57y8f +UJZfMlmdpJGJwSeuasaNavcPISDhIy7nOSuNvp6mvv5JQp2R8QpupUUnvc7i2jhj0jRoZAFW5laV +gw5U7uGHTArktVtVuJLydhmRwkakt1O8Zz+AP5149J3qN+f6nru6g7ntf7FOqeRr+t6G3yrdKjqG +7jkH+Yra+OtncXuiJpbK2HF9tGMjKyqQfxUVhiPczByfk/wOaNpT5X1t+p23wo0T/hHvBNhZspV4 +ohGxJ9P8mvQtMURwyyKuMtjnnj618niZ+0xE5Lud9VKNJRRLIzAEsQCAPmGe1ViQVJAG7b3HNOKt +ocadyEklfkH596ZI4I2ZJIG7k57f56VsldE9SJ0wmAOAOg7mqsrBWIQlT6GrTe7JtrZFPS4jd6rB +GSQd4Jz9e9fQ/h2AQabGoXb8o614meztGMRT+FXNq1jMjAlOODWxHH5aZ6Zrx8MrK55eJkr8o0sP +ug++anjIXoSMjrXepXehwzXcdgsPl6k5GKEhAIYmuunG8rswbsrH5IvMm9fmUkcD5s5z+f8AkVGL +lwjAADPzAkk9u9fbcrP0iLSRUsolkvVkDDAxkkfL1PrX0D8KbpTboqxlfmHAGecVjjF7lkODTl95 +7zpDExjA9xn0rdgQswJJxnpivisRdTsKT6migLwFGXHUZzjmvNvH6H7PKccgHjJB9K5qelSxvgXe +pofJvimQjxC8avtxnPTH1rq/Auhy63dHzMJZW48y4mc8KoxnnP1r7ujDnhG/ZGtSoqLlNHZ6rrEe +qWF2bZfJ03ToCsELf3sH5m9TgE14d4S0n+1777XfzJBHdAqNyhXmZ2HyqByeOM89a+kyhqUZPomf +OZjHktzb2uXvjH4ouob+y8IeHLqO10u1s/8ASI4eFdiOjY68D9TXGXWjWd4Vu7E+WbgLKsLY3Iqq +AckY6nOOnGK9SMW5c19TwYpxhF/N/ga9tHPeLdrGNrRSpcQMR8si8BgD7Hafz966LwfrUA1wrcAC +K9UrIxOSpGSFz6h8HPoMVqp2uv6/qxNVKUGa/wAPNesm1nUPD3iW7aLUb2MoVJwjuHzG4J785B7g +9a7fx94Y1PxzLFFZQG01Kzu7eSQOo27DhZG9x/H+NGIbjFyXRfoc8bU8QpPb/OyPH/jH4vs9D8b6 +l4b8K3kUsGmLGkhRwRO+0BwADyQTj8DVPwx8JtUv7BdT1kXEmkXZWdFeM+arEY+bHT8+cV4Ma8lS +jWa1krr+vQ+g9nFvkn03+7/M+rPhBZuPDNhoNpYLDZWkqyxhVy5cnqxx9evauo+OHjiz8EeGT4S0 +toxrWqW5M8idbW3JwWJHRmPC+5J7V89jJTqT1erZyexjPFQoQWl23+f4nivgqz0Pw7p198U/GyGD +w9oBXbBnL3MxP7uCMHqS3X0GSfWvnfx3438T/GbxzqfjDWZWlnkBeOBT+6ghX7sSgngAfmcnkmvQ +y6nH2kq8toq3ze/3fqdWKl7fF2W0dP1f6fczAlihWYpBKQHRiAxB2nGT/WtvRLczWc0YKh1VSSVH +BBbI6c544r0KzdrvyNoRVjCV/s2q2jSKgaOdC4xxww/LFfQ+r3IMLXcjAPBcREANjCsXBwfbIrkz +FKUEn2Z14K8K0WdRok6Txq0bjDKFyfYAn2ro4hGy5ZQxb5uB9ea+MqJKVj7yF+VM0bMN5WcfMQMn +HOPy9xWi4ZgBwSzZ2txj6/nUp2RnNRbFjuFRz5ZORgjJ74rRhvgwwxwcHiqWructWDa1J4LxFdEk +DAYI6/pURuEZw4YYYgEHpmqW9jhnDW6LVrbxysGUA5JxxnH0r2T4d2cKaPMix/M7AAY/hxmtIRXM +fP55UksM0+6JfDdnPFe6gZLUxwZJDP8AL3681znxFkMNkZmIZUyo2nirnBxai9zysNJTxsWnfb77 +Hj1zcCWPAblyC3OBivmX9ovxct5q1v4WtpzstVE06g87iPlB/A/+Pe1etlNFVMTFvpqfR5lUdLDO +K66HkTo5iE0seVJcA464rW0OIrbyIgDSTKFUrnGCcc9x09O1fWVn7rufL0rc6sdhdbETTo4ydtvg +DI5IA5HHt/OuQ1QmWz3OjRguXbjuWIUce2T+ArxqKd9T25NKOh3X7J92tj8SiVlwxh6HvllB/XH5 +17n8R7J7nxTY21w2Yxqt5algP4Xi3YIP+eKxzD3cU3/dX5M4KSvUR2GkQrDpsVmq8KmOBjmujiBj +t0jBAzliT64r4yOsnJs9LGNK0ENlHOwDBIx+NVWZSxXzFwBgHHb0rsi9dDz0nbUZhSuWAOOD0qAR +lTuwdpJwMd+K2ty7E73EBKjBb5sk5AxxVK6laIEohJxjGckY/nQ97AlfUl8HKbjX48gDHzEe/H/1 +6+iNNi22saoP4cYxXzue3dWMV2Jqv3Vc3rG3EahmWrT5I2gYweK46fuxSPFqPmm2NZAoyRzTkDO+ +RyAK66aXMkjmm9LlhlIXCk8DtQASBkcemK74rU5+h+OEl4Z7jzApUkgYYjP4Vchndom8xNi9OBg/ +5xX3k48up+gwlfQdp4aa7ICHZjOCTnFe+fCOGQoBJHjLKQR0Ix6VwYxvkZ0xaTR9B6LGrqoU84wc +jiughhcHjgDgccZr4vEWU3cynLXUuEhYdrZ4HJxxXmfxDkC28rHAJ4zn/wCvXJT+NWOvL1+9PlbU +tK1DX/Gi6Vp9u0txcSbUweDj/wDVya7XXb2Dw9p1v4H0qVWdG33sqHPmS/3eOSBX6FBONCL62Cr+ +9rqn0vd+ho61olxoPw51PU9QO2SaMeUhbaeVPJ/D8s18/wDhvVbvSL5/GWpRebbaREUtYS+1XlJw +AM9ccnPsPWvcyhclF+v4ngZvN1pu3XT8iXxPd6Zruu3mr6QubSaJJNuCzR4wSG5x6/nVe/nvLC6j +vAUlYwhioG4lTlOR+PFevT3Vjw5J25X2PRfAehza94OudQjhjY2V2PLGB9zYQ6njngE/hUereGlt +luLrTISQp/ehTyvQ549v8mt5LlZhGopNx7MyksI/FcUWmySLa+ItNwLWaTjz0zkIemCMcflXonh7 +xhrHhzUbOy8YX7/bruwH+tUYQDPDN6YB6+/pQ4xaak/IyrpTjy9dfu3/AOAct4S+FHg7xn8QpPFV +hr0Nhp9vOZ7u0nUHEpBP7tx99S1fVnwL0K6u4rtNVhi1HT1k8qNjCoWQA4Hy4yPXJ9K+czSUPae7 +KzS0Xnrf10/A9FznSwUoyW71fl/w/wCJ3HxL1vwp8F/Cs9/Y6XGLq4mItIFXmads7R7AHJPoBXyv +pGj+JPib45EE9013e3s4uL6c/cyONvP3VQDp2x7V8vFzqVHVn/X9afideTqNKhUxtX+ktfz/ACPL +f2lPiVD4k8Rx/DvwZcxHwx4UkMCujcX15wJbg9jggqvoBwea8+8BX66TrF1ZyxpL9qtnhLv03EED +B/GvpIUnTwHInq1f9fy0Fg01UVSa1f5vX8zFEkqXeJ874naN0J5wRjFdN4fkjtypjGJZBkYAAH3Q +c8f7Rq67dtDuppWszA1yMWviKaCTBKziQHPUHkfTrXtF5eEw6jbW0rHy4YJAW4xmNDx75fJ/GuXF ++9Tg12Omi+Wpr/WqOm8G3xuLWIgbgeQDkduR+ld/bMGtzKCM4JwTg/T+dfG4lOM2j7qnNOCLNrcM +o2A4JwD7d8+1atsS42yqBk8Y59qxi9bMKiVrolS12uXLYBBIPT6fSuF1j4jNpuqSWb6beNDCebhF +BX8up/Krgp1ZOMfUwvF6yLWn/Evw/cMskl3tYHADxlDnjjmr58faY0ZmjAmCZYkDOaf7yLs0T9Wc +3e9kQTfF+G2j2qzxEtgbYD747VpaJ8V9UlaV4b2dVI+UglefTFJ03bmmio5dh6icGk/xNDxd8eNc +t44LZRfX5ACsY+FVc9ST7c96yNU+JXivXNKh060sZFjnYAvMSSMHtiuulTkoqTVl+Jwf2dhsPBRj +GzTuGv6tb+EfCdzrmpSgeRCzsC2NzdlB9zxXxZq2p3OvarPqd6/mTXbtIzEcDcQQB6Y9Pavpsihd +Tqv0Pm84qc0o0/MSWQs4teGCNhUDdyACcflz7Vu6Yv2eznuSVBLJHCdwGTkA8k9uv48161d3il3P +KowtLQ6lAJp4IJ0YG3IZm45+RDj36muXuGk1X+0rSNFZoolc7eQuOePbnFeTTet30t+Z6rsloXP2 +frwaT8UNIklUhZJGhc/wkf8A6wD+FfXHiTT57/xdNcyrmOG6gnUlectCyE/y/Os86dpc/wDdOTDJ +Oql/XQ2xb7EYInKkghuMjmtoKVTJUgR4yT1zXxlFKzfmdmOlZq5Vfe4JAGegyPw5/Wq8yuSWJ5xg +DFdsNdDibEkcFFLNwAMEDrmopgMhxgYGFHQnNbJbXMr9iFiWBAI25PQYBFUb0iJSS+fqM01rM0Tf +KaHw2hafXC4xxgD1r6Q0W23QqfbjFfO5zaeIUTHFPlppm8sYjj2A44wf8KYwCsWJz7YrCyR4d7sO +WUZH1qVEUevbpXTS3MKmi0JipZdxGe/Sk2AAAnHf611swTPxejKDAZiGJwC3Ye9aMDgRkbuCeyZx +x19utfoVU+8w7bWpq+Fis127bA7RlgM4xjp/Ovffhe8aMEVOjYBznrXl452g0dlO7m3c950GQLsU +j8c10sQO3nIBbGBmvhcRpNk1XaRPMVW3O3IyMV5l4+srqWyeSKGRw7FQwXIHHU1tlmFliq6jH1Ns +LXjRfPUdjxTxHregfDS2uYNNdbrxNqIZJpyf+PaNuy+h61j/AAy0WXxFrovr8l44j50srjjI55+m +Ca+65W2l0QQqOEZ1pbu/3dDU+JHiaPV9GvIp5XitiGWNGPOwZ2gc9SSP1rxyPwleaj4Z1XUCrQ2u +jRwwqWAwXkOeBnB45J9BXtZev3TfS54WZNU5q77fe7HD2mp3Ub/2fpTsYndYIwuQZM5zn1znv616 +A2miPxNFpc7Ji6tVsnYjISUxhh+O7aa9akrWl5nk1FZt+X5HrfwI0wr8Ide1G6tiLldUeKIMMEfu +tpAH1OPxrhfDviM3k11baoz2stpKUMoXaSRnGR9OOnY11J3nJPY8yi5OVVrdSNzV4ZIXj1aK0t57 +co00d3ENwcjOF44PPFYEF9P46mF34qkEeq200ASYxgeZb8AxkfQnn1yKyafOnI6otSjzR3t/w6Pb +/h54I0jwppd1ZQ2KiSOJWMjDOSPlJ+nGfxr1n9n7WdR07xRqd8Yw2hxWjrdzOfkR0G4H0GMn9a/P +84hUeazd9LJrsu59RGVGXDtSUlq9PNvS34nmfj3xFrXx38YI2jROdMgZ1sdwOASCPN/IYH1zXN/F +/wAaaF8Dvh83w98FajHL4q8QwCO8u4cb7SAj5yrdQWztHtk1z4Ve3xEMJbfWXp1X5nHiaTw2Chho +/P5a/iz5Jggj8slcyHn5hnp7+nNQWc/2XURO6jCkgANyDkYP619fVSbkjKje0V2LN0zJfC5Yb42f +cyg5AYcZ/H1rVtyu5GhAXayshY8kYOT/AC6Vyyvyp+R2q12kReJ4S+qwXLjiVEQsDnkevH+cV3cO +ofarq6aOTCPDB3x1j29f+2f51z19aUdP6uXC/O7HReB9TVwjCNlXOVYsAdvb9TXpFrflo2GeqgAh +u+en6V8njqdqrR9tgqnPSTZoW90oC4bGeM/iea1ra8RmVZDglcgg9q5ErHVK7TaN9ZFnUKo6jHIx +2/wrD1bR7ZWYwRLtYEsDg5qeaz0Oag+V2epzb6JpLyhmso0kPzbtuB1q3ZWVlEgW5skKkkgjBB/y +a2jUk2uY9mmoTjyrc7LQvCXgu9iiOqIVLAPujQZA966fT/Cfws025DXUUm1ow2cDG7qRn6CvShVh +FW5LnzeMnj41JQw8UuxS8d2HgyCGC08O2yM0jEEkDPfr7f4Vz8VjDb2YkeNAY/uD0Pr+n6VOInzQ +10OenOsqMFX+PdnzR+0d8RH1jVF8HWE4+z2bB7kq2Q0vZc98A/ma8ftNpAnIUYKr8wHcH86+qy2l +9XwUV1ev3/8AAPlcdP2+Kd+mgyzkEl6DIoGGDEsMk5PHOOK37aZ59RttIljVPJbBVckFi2T/ADAr +WvJNvyRGHi0rnbTQSRanfEKrfZZpRn2A5/DkfpXPeHoPM1S8LxIhvI5YgvDDOzlgSOxxXm03aMn6 +HfNe5uY/gEva+M9PnVQvl3DOGXp3IP6V9439mov5Jo8kTWUXJ/vKwOfyrnz/APhqS/lf5nNhmlWi +vP8AyHPHiaVWGPmAx7kCtB1Zvut1weOa+Sp7Xfn+Zti5e+rf1oQNGyxqHBBJ65qN0DKUUDLAHntX +UnZ6HHdNXKzRMcbGb5QTx0+lRSueQDnHqO9bRk9mZ2vqMcKrBFzyOeOntWTqUgALEjkc+oH+e9XD +fUvWx03wfhNxqbk4OJMHIGa+l9MtRHbg46AflXz2ZK+LaObMJWgkiy4OckdMcE0hi3DAHXvWK1Z4 +t7IcE42knB7VIEVDkj610wtHcxk2xjTAHaD7VG1ygGN2aUqyWxUKbZ+LhkkNw3lsJOBjcu0/lTxd +xLFuLkE8njoeRX6dVhdn2VCpaJ1vgO1a5mllAGxT94A9a9r+Gdy630gdCvzAYyT6c8/jXiZjJpSR +6mGSk7nv/h+5EpRQRnJBIrsogoVQufp6V8TiU1LUyxCtJImkJ8hyRgEetea+O9SvrawuYbW4kRJP +vAHg4/8Ar1pgq7p6RNMJRjUnaS0PjvxW7P4llMqmSRnIy3oCRXscrxeE/A+laLpyqtzrcIuLmZeG +K54XPpkH9K++pL9xF+QYl/vI01tf8jyr4ra3awWVj4ehDGZmWWZiThTnvj8al8RsNF/Z6s4kmf8A +tDUdTMshLYYoFABB9ACBXt4WLhhoqS3Pmcxn7aunF3978kzzbwPZQ6l4rsoLhfMt7ZTPI27J+TkD +tz2/zxvxeKYpPFF4l6Gjt7+6juYXcf6p0IKc9hgH9K9el0X9f1qefPWcn02PovUNK1Pw18C7B9PA ++2T/AGvWJYY+WYtIFjY+wyD+FctB4W0fxBqNn45tbcpDrsIkmjH3RMow3vz16d62j1f9aHkUqvLG +U11cl+N0/uRx/hC/1XQNa/4RyTTZ77SLi+aIw7QXR8krIpPGAV7+v0r0vUNF0mwh2skUgvmkaXU4 +VGIXZ3ZflHQAvjj09Kmo5UoOSXy/P59vU6pfx4047PX89PmdLoHj+y1bw/pS3cAgvJbufTXnB4dE +VlBAx/FtDD613/gfT5P+FKa3aSXrxw65ci0jMYy0pdtpUepI3D8a+Kzil7NurPfVr8H+rPoqM/8A +Y1hktHOH4N/ojL8d+MvC37O3w6bUbcxPrl/mDR7RwGdwU2vcEdkAYqvtz/Fx8I65rl74k1e813VW +eW5vpTLJIYxtB/ujjgDAGPQVz8MUHKFTG1N5Oy+W/wCOnyIx9R1Kmn9Jf8G/ysQ2yx7cID8xG1lU +AdenOPbmq+63k1CRVhdODtzg4+p/EV9C2nJkqEklqOgMMzMZXbyyAFJcHByeMfn0rRjMUaiEybjH +iSLc2RtyMrx0Oe1Y1V0SN6bb3DWnguEimRW3RkjIxgEHJ4x9a6XT75b0wqZOZ7UoQpG7KNnHPTIJ +rmqpypJG8bqXyJPCupPaSgRhsRuQ4J4wOgx+X516fYasskSyLKDnlkyAa+ezKnadz6vK53pps6Cx +vkJKr95Tg5OOo/xzW/aTKY1JTkHPLV5L913R6urVzZt52OSpwF4A6DP9OlWLhhNHhmBLL1FDheyM +b2Zj3dusgyy5yMAgdP8APNVZLe6BKWoJ+bG1hxUOD2Z1QqqHvCwanqVr+4No5GSflBwV9q0F1PXt +RkCQaa6qQMFz09efzrrpzqpWdrFTxNK/PI2YbL7DAt1qE/mzsCAvBVT6CuJ+K3jweFtOtLSB1a+1 +CYW9upz8pONzkegB/MitYxlWqRitf61Pn8RV9o3Vemuh8davfTXmq3t8w3tPOX+YAHk/qP8A69Lb +LI8CIIQsZk3u/PQD1/GvvLctNJHxmk6rky7NaC2dS0fEm2fGeQv8I+vIrT8M24v/ABfaQkBDcncp +Izklsc/iDXDWu4yfkzsoSW6Ovjillu9XkUfvJluXO8EAEMv585rK0ll/4Se3dVDRRyHao7llP5ZH +T8PrXnpvV+X6HbJKzTMHw3E9p4p06RwgX7aq4Zslh5hHIz79a++pUke0snIH7+yZic99gx/LNYZ+ +26MH/W6OSj7tdf10ItyyXEpUcqS2fwx/n6VOQ24LjjHGT1FfLwTtZCxL/eajFXaoJU8sAOeaRomc +kAgA8cjv7f57Vs007mFyCWN0bg5Pc9aqSgqwIY5Ptn1reK0uZX1sirI0nZwMj0+lY+rTuC5YgkKc +gE8Vul71xp6WO0+AbrcatKpByrE5x/jX1JBFst1JPO2vnswV8XJnJmUtYryImQn6duakiiGMNjHp +isKa1PJkxsrrEMg9xVKe5kdtqjp6CirNrRBTj1ZCyTPyTSi2c85PWslTctWbKSWiPxcWdXfcqABu +PlAA7dqQrIW2rIDjkjGTxX7Dy8zPooycI6nsHwytEg0DagLl23MCCOeea9R8FIplkcL91j147818 +nj5tync+hwkVo1uez+Fsh0LN8pxiu5jYhcEjPYV8jiNZGWKtzEzNmBgOSB0NeaePZALWQkAZUnOf +8+lTRtc2wKvUPkTxhEg8RF48lmY9unOc5r0ifU4db0PSDcuyz2cYtk2+gBwPzOcV+jYVp0Yxfb/I +yxt41FJdG/xTPMryzstX1hYL1UggidhKWYEsy8ZJ98/zrJ8f3N7HbWGkPI0kdjbyOig8AvJnPPXA +C/nXvxvZRPla1ue5j/DaIPd6vfMF3Q2rEg8kHp0/KqNoW1G0iQWyvPA5YIwJDc9ffvXfT0qJnJGP +NdH1hr3jqc+G/DLlUglfQ7RpJAuUQGdtwZTwB8pBFN8Jvp9jFf6XFCkNjf8A+lWrB90cNwQfMRT2 +Vhzg45randwT/r+v+AeD7PkptLvf+vlc5vX7LWLXRri102Exy3D5mnA+cFT8yg9s4/HJqPwhdpr3 +hbWtIZPKFlbPEHZsOgckhz/usoHT+IelZYlS9hJrc9TBKE69Ny25lf5uw6z8/wAD6N4V0i9uftlv +e6oQJZT0BQugyeuCRn2zX0d8OfiJ4K8MfA7Udd1vSrhI9Bc39wgCsJSThRGTgAsSB+Oa+WzuVXGY +SKpL4vwuj0K9D6nOpT5tYzXo7Sa/yPg/4w/E/Xvix4zm8W63J9nEw2WkCkbYbcE7EA9h3HWuNYR7 +V2THcvynOcfXOa9LCYeODw0MPB/Crf5v7ypNSm5Jaf8AALlijtbJKXkCLIq78457jPpVa3d5dTfE +gxjpnoeai+smdcldKwm8tbM6yMWQ5IPoTzx69Kns7xplKybg+BsJY8j8O9E23F+RUY2d11Lckvm6 +fKiOxdgQVzk9OT+YP/1qNKupooUdZCskJwCSc4YY/wDr1y6uLXmdNkmX7C5cazLFbO4SdMg5IHOO +v54/Cur8OeLImuls7p2WeNtj88Nx2/HNeXjqTmrrsetltRQXL5noWk6zBIivHKOTwSc/rXa6bcJd +RxBHXIIJGetfPVLp2PpabTjext27jJ5IY9M54Pt+lW4ovMBBBwBjPehamEpON2XbTSluXUk4yAcD +OCK0LPQlgn8uSJRuPLN29/8APpRa5zVK9vdOhg0Cxji/eRAZAAZh1NVZNNMDsEiHAIPbPGeKV23o +cEcQ3e7MS+jDyGRzxCDg56e1fHHxI8YT+Kvibf3MaM9lo0c0NsCSBhFIZx9W5B+lexldLnqyk/sx +/PQ58ZVcYKHp/mea/wCtnMzE/LyBjAABx2/M1r2FtthMk5VVAYhSeCzLxz+P6V9fV0ifL09ZEtzG +JJjDGd4tYi0jOQoxtyBz0ANanw1tluPGWlswysRAJVSeVbP65FcFVr2cr9j0aSaeh2MUEhu9R27c +qJkC9BgzKv17msewjt/txuVAUwksGz0IU8/pXl2dmehu2c6YTDrEF6oObi4guIiOM5cMevbmv0Gg +jjbT9KDHLCBc4JxjYwx+lZZ571Cn/XY4HpWT9fyMnSwJ1YlgxlcsPZRnH+ferzBS20jk5wa+bgrN +JsyxEm6jt3K5KpGSHHJ4GR0pvmMWADD5hkhTznpXVyrdGMW0tRkoyV2hj3JHA6VTnIQY4I5JPtxx +WtPV2Mm7alGWQYJGBnBJ7fh71gawzk7gc5Gcc/5FdFNJsSlY9F/ZxtJbjVru42llUgDjv619TIpW +NVIPT6V87mSSxU36HFmE+aUUVmdUbJHGc9aYZXLELjnrXEpO1kcXKupHJGzcsTgepzxTCIkGDj8a +bsnqNXexGZAvAXBpj3DKORxnHvUuTSsbRgmz8VozEjMJip4+U5BNRxspdoy28nnGdp/XrX7IrLU9 +lt2PW/AWrF7NLW3dowilNvAJGe9ew+CLcoHnkcHcwHTn0r43M48jkj6jBS5kr9j2XwqmxVLHqMkG +u0V9xCkgHHOBXyWITbszPFK8ycgeUxPRhgZOOK83+IC4tJAQDjOR2rKknzq5rgP4mp8feLLhE8Ss +zL92QtkA8c+tb+qau+h+DI9TDSLcSECyTOAW/icgjoBx7mv0jCxfLTRyY+rH3tTzLTri81i7htbe +Mnzb6N5SuQQxbHJ9P5ZrovihNaXfi+O70+RZLaaDyEUdFEbbfxztz9a+k0i4pdmfLT5pzcui/VmH +4fhfSrjU8BGjuIQgYDh9zZ4x6Y/SsHTtTbTGt7hI/lhuGEm3AypIHP8AOumk7zRk1yKzPpTxn4ZG +r/D+G6055AraBE0KA8SBZGfPHT79eafDbWNX0iYXAu/9FuI2WSCblJHQ8rjsSOh+lb09HucFPlrU +pLz/AMj3CHW7TWLmF7mSK0jjREl3LhZA+Cp3fhx+INPj0BvDF9qt7BpirY6nb/Z5WLAq+7DAjHUj +H5ZraS5oOPV/ocVOfsKsYSen/BK/xM0BH8E6feCxabSNIm8x5lGZrd2UBHQjtnj6Yry/xX4p8WW3 +hM6VaajdL4e1SytYtUieIBWaI5j256ZxyQee9fLzo2cYPZPTyfRf10Z9NWr08WnU6vf1ve/9djyT +VLz+0L83YjjUOAqRx9I0AAVRn0xjn9arzsTKJIUJTPCgg4J98138rilHsjCE4tOSNbTre4ksVgIf +YheTaHyF4Gf5foKzNKiD6jKXjKsQWyF46Ej+lcN/juj0nZKNupHZqA29lfaxKScZzwexPtUAilil +eNVJKMCAcgn6c/5xWrWrM4yRoxyGaHMYIYNtKc52njH+fWpAjRu0DrtDqNjE8HHQn8O1c3LZtHRz +3si0JRFd2U4I3g4c5xweDz+H60zxFZXMNwNSt5EVmOH2nHzD9Oef85rFxSnFS66HRRnJJuPQ0vDP +jW4t8W12zZGOeD+WPevYvC3i2zMIWa6VWUZ6gkr/APX4/SvBzDBulLmjsfS4DFRqQs9zudL16wuE +3RzxlQQNwcH29fpXSadqds2VEygA7SSwPPX+tedZ7nTVad1c3tPvRGFKMhOMjHp/nNdPDdQ3nyBV +DKo3c85zS3PLxEGmpLdE9wIURCzjacYGPzqG/v7YWzIqjcQCW9un+NC3sclpSseZ+ONal07wzfzW +z7Z5Echg33WI4P8AOviDS2lNvfyBGMlwfLYA5yGbJ/lX0eR0+b2nrH82cmZzUIpvz/BIkazQRCME +45JG7I/WtDTYWkE0bDAWIynIO0YUgH88f5NfQYhfu2fPYaXNPUz1FxGlwzFgb0NGxxxgYJzj3Arr +fhXFjxRbzNIB5TliOCD0P06+lcNdONKX9eR6tNxbdjqJjItxqb7BukLKm0/9PKH8D1/WsiO0Z7Pz +BEg3ecGJPQdeD+NeXfQ742vp/Whzur2rLDopaJy5hhQEMCQfMHp6819/xyxjT9JWTgi0jZiepyuT +WWcN+wp+rOKSvVVuz/I52z1K2tm8ppVLYIA/ujP6VdlvreRSqt1464+o/OvCUHc56ibk2iJGG0Bi +PmzgKOMU1yBypHXrzmumxg229BJHAXJPA9AR9c1QuJc8kDCnpnP/AOuqhFXuS29ijI4IyQME561g +6vKVR1Axxjr0/wAK6ILUk9y/Zn0sx6dNeMnEsnGe+K+grkqiAKe3f0r5bMJ8+JqPzPPxl3WSMwBm +JJ7VOgUc56jNcVN20ZlJa6EFxNhQARVCSXBLM2B6E0pvXQ1pQb0MXVfFWmaOjSXt3HGqgklmAHFe +R+Ov2rvh34USSM6xHPMuQIojubP4VphsPXxlT2dFNs9fDYBzXtJ6R7n5qRWcyKTtOD0Xd0Pqf8jt +VB5ZUk3bvnB+VsnHev2WL5mKSSWp3vw5vRA6yuwHOw+//wBevbfh3rLXeoyQRuzqpB5PT0xXyubR +cpTfY+jy5qyu+h9B+GpC8cQyCRgYHf8Awrq1GCrDPUZ+nrXxdZtO6KxGk7E6yh42UgEnjPTj1ry7 +4k3TpZyANl8EY6nGeKihDmqKK3ZvgtJ6nlfgr4E2OqNe/Fn4r6iNH8J6aN678h7luyRr/EW7Adaq +z+KPD3irxjr143hSHSdN8PaTNLY2k8q7xtXbESP45Cz5OO5A6DNfpNCq1+7ha0Ek35u2n6v5HzOJ +r+2xFV3fKrpW6vS/3berfY+dvA93daf4pht0kCG7JRGVg3OSBwO/BrT1GGdL+e2kbMcbs9v8wLZz +0/8A1V709ZXRxUmmtilc/bA8GmWxc3G7zZ1zyWxkD8B6dMn3rmJBI0M0SqCrMxYZGCcg962oO00/ +Micbn2P8P7uzm+HfhjSddgASXSls5HYcqjsyg5Hp8ufrXkPjvw1D4WfUNDtbCWEwyPNHNKRiRMdV +rovyyTa7HkYNOE5U29Hd/izY8K+M9G1nwJe2E4kbVLa1IjVfm3kEYbPbBz/31XXwSeINL8GaR4r1 +0ozWiC3js2fY0qHBJA7nB4ral/M+miIxMXGXK93LT5o9Hur8al4Ji1Dw/bC5tmiB8hmxvJG9Q3XG +CMfhXG6H4q8BfFpbj4favoJ0TW7yyCCGY8NKOFIJHBB/lXnYqDtdrS935eYsNKcqUpRfvR3XddT5 +2+Knwn8T/CXUEXV7KdrW45huFYhWHofQ1xsVz5ibRF33Y7n6H2onaUeY9PDTU0uVnZWSQLoMkypt +ItHMh4+8cDt9K5fww0jXV5IkbMsVtKWDHOBgjPtXj09YVGe5W+OCKqy4IZSc7urZIxgD6VJPzchy +rBXXkf5Poa6mtTCN0hluViDAKRsYYHcjt1+tbCzoiLOIsvH8xBXPHvWdVa3NIvoJf3IVBuQBlYOv +y5yMflzmtzRLiHVrExzRs5ZBGGOAFZR1Jz9K4sQ37NSR24a3PZm1oXw3TU5hPPKFjBIzGgJ6die3 +QV2unfBbTzg3Go3SoucgtjP4AV5tbHJO0lc9alhW9UzrdL+FeiW8ZEGoyRYGRjpn2/Wug0/w1HbA +RJfMzA5Vm55HY+2a86WJpT0aOhwnSld62Oo0ezQSRlrqQBRufag6/wD666CBYbZhMLiQsQScDjvg +VzynHRJfiRWnLmtbfzL8slldIqSXMkYyCQBk1DN4dXUoxBp+rFM4BZ1BGamLp395M4JV6lKPwo5/ +x38CvFfiLw1c2mjajbTTSqxCN8m44wBXyD4x+BvxE+HspXxB4auUgBJM0KFo+PUjsK+jyKpRpuUI +y1bv2Z89mOZKvyxata69b+ZxpaBZMoGPzNndjkdMj070+zuYVF0jFf3sRReQMHjnke3tX0VbWJyY +VuTKbss8pgiDEeVuAA6d89PQfpXafDeZk1mwckEOnzEH+LfyP5H8a4MUmqbuenQleR11yitdXy7e +Y5mAIXA5lBAGO/FZdsXNjNHGynbBJhGPbaAT37ivLa93U7qd3IxY7c3FxpVtKoDpNCqcDIzIpAGO +3DV9t+Ib1bCwV1bm3sbaMnp859P0rkzd/u6UV3Zm4N17vt/kePXOt3jOl6jthmZCOcA7jj860rTx +PJsy0hJUc5PGfauHlW6LdH3bM1IvFQV0HmAMRzkdMcVpQ+JreRQVkXGefQ1o4XRwTpcruy+t/bTx +gpMNxxn2qvNOrjcrDPXr1/OiK1skc0otbmbdyuv70njOQB/hXN6lK8sqqCW3Nj8a6aaszOO59d/B +fRRpPhayRlwfLVm4xkmu6ursNIUU9BXw2KqXqyl3bOOrHnrMriQhSQPunA9+tMkuCByfrWHM4q6C +MU3qY2ta5Fp8TSFunevnn40/tIR+B7aQWqF5sEKu7jNdmCwU8bUUF1PXwNCDlzT2Pi3x98fPH/j2 +eSK51aeGAlj5MMu3j8Oeg6VxWn6HqmpQm4lMjAnknPP51+n4XB0MqpKMFr+Zs6k8XLlWkUena38L +9T0eJzHEHTa2WAIbGBx+dee6voFxb+aJrdjnOGGDzz6/jV0MQr2ZCiqkXKHUsaCn9lwLK7Pyx8tW +GR0z/OvRPhb4qSLV8ElS7YJx0/T8K8/MYe0jNo9jBe64KR9Y+CLs3NujhjgjjHSu33tjKdBjnFfB +VdGdmKjapYmi86ZWiiUliOBgHP8An+tYGuaT4f0dptV8ZM7Jbp5iWUWDJO3OFP8AdX1rbBp0pKvJ +ei7v/LucjqySdKj8b28vP5Hyv8VPiZ4y+KPjBLC+Z00nTdx0/S4G2W9uACQ5UdSACSx5rmfF2iwf +Db4V3b63JIPFXiiaMrbty1rZDLYO7puOB61+g4CCoUYQjrKTV/zb/r0PFxlKNBKlDZf8Pr89/Nnj +Gi3z6ZrNnfqDiBwx2kMRgn/PWvQddFzqeqWd/pVu01vcsT5it8yEDJBPbj1717lTWSaOKlpF3Mjw +prFpc+KbO5eXMTXoLk5YbS2CD3ORn8zWj4t8KJpuqXkMClIRukQhOPmPTPB4xVJ8rXoO13c7v4W/ +EFf7ci+GfiQBVaNY4GlfhSVHyZPQHIA9Diut8eXWl3ekz6D4+lntWjfytO1KKMluTj5sDqMYOetd +V43XN/SPHqQaq3hvuvnv+A74RfDvwrpd61vpHiqzvkuIHaZTGBIYzxznoMj261V8e+Lm8U6+NM8P +RBtE0eIwxAj5LteNzKfXgYPsTWnNGU0oPRanPaVXEXmrWX4vRGh4cv7mO1a2up7mfRLpRFvXKugA +yAw/vD/6/es/RfCWseKfHENzNqItbrSp4v7PvM7HuXDgKsh/vYxhvUD1rGvSi1KT0Vn/AF8v8zpp +TVJysv62Z6J8RfFHh7+3pPh58QJre+0e9l/s+e6Eu9rCQJhJXPXbv6+nXsa+TvHfgq++HfjSfwxf +Si5RCJbadMFJoWzscEdQQev1rzqE06XJfTden/A/VG2Hpyp11Fr4kn8+v6feW5LwjwrduIQgLoAC +xBAyeB+VZHg9ZJpNRBfA+yTFwp5IweD+efeuKCjGlUfn/kfQV/4kEuxlNJEIJGRQoMm1eegx/n9a +dCBPDIkqMzREbc54/KuuT0uzCKaY1HiRQWTJ+6cnAz6gfjWhp5aZXV41ZCflL4wR+dZVPhuWnqLN +EZI4yyllHy4x8oXg5/OtfwTLELqe2ZVJ3ZJ79cZ4/CuWur0mkdlBtVLnu/hGJEsY5AAwBySTyOn5 +CuqMxmj3AcHOQepHoa+QrP3r2PrqduWyLFtMQdjAg4yDnNacarG2HJ3ZyMHpye9Q0lqRKOqTNG0u +DGpDse+SOM1K9/IxIViB/DzUa9jKdO7uS27ySyhdxGe4HSu68O252Rkr87Y9sYFROStZHl4/3aZ6 +FpoCQqpGMcDjB61oTWtlfW7Wt9aQ3MLnDJKgZT+dTGcoSUo6NHxdZc11LY8S+JP7H/w68btLeaDC +uhaixLboUHlsfcV8d/Fj9nP4lfCeWW6vtF+26YDgXdspZNvqw7fr0r7DLM3WKXsa3xfn/wAExpSl +h56vR9f6/pni0+pRQzSFbZOCVGRnjB4+tej+AL6JYROIFYxyq6gDnJwW6ewB/CvSxv8ACPZwl5Sb +udTqEwj8Q6isSglLjeOcjJZSDj86y7SZI4rjzSoP2ZUJxjqxH5/415Un7v3HpUU+b7hvh5o9Q8Sa +DaGLEs1/ArkDACZLL/In8K+uPH8rSNd2sB4acRqvoANo/Va4M2fvUYrzFBP2kpPs/wA0camh2wRY +nhGJUIcFQQMsT0/Gs650E27lFPzR5GccEnNcPtHzWZpCV1cy7izu7cbkOBuOCQRx+FZ73l1bEByy +kNgDHP4V1RelxSiqmiJLfxRcQ8zMQoUAHbkj8v8APNXl8ZNEqt5+8EZI4HY1oo9jlq0Fa9iwvitb +hdipuxgcDoCffvWePEFpNqcEDuoYyqnzcck+/StIK1zj9g1JH3L4EuYx4ftTEwIEQAIHHStQSPLM +Se5yfpX5tVd6jj5s5XDlnJsmBAUAHoaz9ZuRb25mWQDaDkg1tZS0ZnTXvHzl8cfj7ovgW2a1nnE1 +y4O1FOT6f0r4W8aeLvEHxB1x7yVSsLPlFz90e/THevuuHcI6cPrVRadD3FTVOmoLdjdA8LwGZPMi +IPOSRg5/Wu3isLcxLbRAqAAGZVHHB9vpXr4qu5zOqhRUIaH0TJp1tfpJCsQYDjYR7V5z4y+GqFHa +K3wDkkFSefw6en41Mrx94+ewWJUZ8kjynxH4bFjZKpAGwFh1yec1i/DmcHXVjYMvzgKM9+5olJTo +Tdj6Sg26kT7V+HKn7DEGQhgoIwPSvQoy4AbqDjPvXwNdNM9PFte0dy1byz25aSJ9rH+Lutef/ESd +prWUMWZ3yfUknvU0m51Iq5GFhFVHJI82t/AVp4H1HTNV8Sqnma1qkaurL832KIrJPjPXJZE7Z+av +mf45+M5/iD8UfEPiF4/Lgmv3W2hY8Rwp8qKB9FFfpeXx9pW51tGNvnc+Zx1T2kvaLrf8/wDgHnrz +RwMQUZWX5Mn+E+te/wDwy8LiTwtdSaDq1vqf26ykjjt3bbLDcMAOh9Pm5Fe3ZSjo9TzptRj5HE+D +vgl8Q4NcEGpad/Z9lAxee6llGxFB+978V3firXPDt74vM0BabTbVFAcLxcyKQTt9icDP1q6keWXL +e7sTCcpt26J/ezzCfQdY8V/EGVdKszHfz3ZnlETEpBGeeSPQda9i0/4gXF1q1t4F1PS7fxDGCbWS +424mL7sA56Nj6fjWi51JLqY1acZwve3Krk+sa54d8A2t9JYlrrW57drRUhkHl2UbAhSezPkkkD0r +nfBepQ6fBHpGpqsmmXORFPgE2sp9+6E54/wralJO8kc3JKUXN7vb5bfeen6HpF2viGwa1hW4s51N +vdQ5wsg6q49GU1t3Wgppj3LWMQuXTEtnIxxu2EOv0bgVFa7pyizBVFGtFt6O1/v/AMjzHxxqNh8V +NGvdc8I3ES+LNJUXepWSQbHvIkzkgHncmSGHeqSQab8XfhdMmjWIi1zwyZbu3jJDyNAFUzQAgAkA +kyKOoG4fw15aUlRUpaO9n89Px0bPTjNU5KHWD+9dPuT+9Hks9zjw+LSAfffe24jnG7H6mjwRbEf2 +u7yEbrVgGUgYywBPHUYNc06bjRm+7/U9idROtFeRmvaoIJFYAfOxBDdMDmiyBSeYqchjgZJ4Iyen +fpXTa8WmYSk07lnULOECN4jkMilwxyVb/A0WQkkK7GU+WwBGeQDx+PasnrHUcG7u5utaLc6VI+0K +bOQkqFIGByefpVLwxGBrK7QRvVnHPPAyc+3SuO6cJrsd1nCUT3rw7ue13LhfTaMj8K6m0DzZWQZw +OTz0zXyVeKU2kfXYZuVNSZdjYuyxRKA2RvOSMCtu1tzIoLnPBBwPpzWM9UVfVy7E0gWKPIwcDJ57 +5/8A1fnToCJ5yzcgAc561CelmTNXTkb2lWrHazKM+pHf1/nXdaIYoiipIc46AVlP3lZHgZi+aPKj +qIp8IrK/OOMVfhumSPaZOeuDWN7HzE4GpBKHAYEcdKtS21nqNo9lf20VxBINrRyKGBH0NawqOMlK +L22OWrBSi4tHx9+0v+xDYatbXXjL4V24t7pFaWbTlHyvzklPQ+1fH+hXt54e1C20TUYDbypdGGeN +0KuBgIQR696+5wuKWY4Wz+Jb/ca5ZVcJSpz3X49v67nX6xqEZ8Q3oM/DGM4AOegJP/jorPt5Ee0m +mWRyxVBtxgE7zgc/yrKUbRXyPoaD12Nv4VRprHxX0HTWO1UvYjtHGMRuc/rX1Xqbte6xGEI2vIJm +DdM9a8zNpctWn/hBX9+/9f1Yry2iFgcYJUYx6kfpVO6tTI2dmPlwcDrgV58bOSZz3aVijNYRMuXU +Y745ycVi3+ixsxYQ5OQc8Z6cfyrpjo9Co1Huc7qPh9clUU7vyJPFc5qelXMEY8s5GSWyDxz0Hriu +qm1e5pKfMkmdV4Z0SOWxklclmI3gn0x+nFcXq+nXE/jCwtbCJg7zKuM8DmuShiVLETT2SZ1Kg1FM +/QzwBZSW3hiygcEEQr1+ldJb24VizHnqK+Fkr1XI+Zry96SXciuWEasxfoM9cV8vftBftGweBIrn +S7X99eOGWNAe/wDkf0ruwGFnjcRGlBnXl9OEpOdTZK58U3t5r3xT1yXxDrSsUBLBTnAB7D/PatpN +NtLZVto4EGwbdyIPfiv0WbjRSw8Nonr0oOV59zbsNHCLkKduM9Og6UOFjlNusYIJG0lTkcDrXG5X +nc6oRaSTZ7p4X8Q2N3KUtp1kRTy+ec+v+fSuuvLGLUrZ3WLdxxkdDXfJHwFXmo1FI8d+KfgxoNPa +6KmI7dxHTArwTwNGsfjGURjJVgApPvyf8+tYwdqNReR9dl9T2qhLsz7b+G5b7FESfmIHUY969L8r +5VwM9DwOBXwWJfvns4v+JoKsbLE+EJPAx3rkbmK0fxLph1MYt/tUQkBGQV3AnI71GDko1lIVBtxn +y72f5HF/tF3OjeLvijrOmvr76a/h7RXntMHZCyRRi4kx6sxVRgc8j0r4OudZfWjvvoBv3Eu64GOB +z9fwr9OylRhScVukvnfU+Vb5aVOnJdEyb+z9MMqKLpl3spIJ44IBPTFbesWklppcEWlTvDLaMXk8 +mQhj2BJ/X8a9RSjopLQiSTTaNe+8cXQ0m106LX7+dGjCSRtKQrP3HXn0qvdpqlgtvPqyrNEVDwxT +MR8pxyCpyeg4qqd6a5rEy5bWRa0z4mao6y6H4c0qy06S8BhLwRnzXOeQWJPXmr3wL1bQvD3ibUJf +EEzNqBjkjtMkjZMeAcdiN2cmt4ttuUtWclaLVKUI9TIezuNK1680XxAX35k2yuc+auPlYeuCOvt9 +a6fwlPawAaVezK+n3j7I3bOY5DjB57dM/SumDSVkTO8k2keleENW1PTdfh0PUZWYPwhHUYGMAn6Z ++gr0qXU10S3vJjAtxJARPAD0LKOVPpuHGR6VNS9nFHmYmkpNJdf8zyiy8OX/AIC+NVl8R/DEkSaP +rkuLiykI3GGUgyKFJ+bAIbj0NW/Fb+EvhV47tvij4OkZ9D1vUoJDAi5ihfDi7gPblScfWvOr8zqO +MdVKP3SX/D/gejTSmlNvWS5X/X3njPxu8Ht4E8f6v4cjfFk0v2qybaNrW0vzxkZPo3b0rF8Hxxqd +TkjnyBa/N14y6/rk/pWc0nh2+/8Amj0KFV1Zwmuy/IqzRCHa8twq7nZs4zk4HOPx/SoYRA12QjYZ +XVvlj56+v6U42cXYuo3zppGhqcStFbusuzcrOSRgEAAc49wfyp+hxWcj3KNMhIjUrgHBIZT2x2z+ +tYyaVK/9bmsE3OyX9WPQPA+krf6fctMu8MXEmOSeoJP4Y/WuAjjk0Txmtqso4maMqwP3WBHT8q8y +hJSrVad+h69aDVKE0up9AeEYFfw/azmVc7CxIGP4un15roEnuLyNILBAu35ZJQcYHp7mvm60U6sm +9kfRUJP2EbLVnQ6XZpaqEQlxxuck8981ehUq28ttXOMGuaTXU3tYkdSQY+SAxBIOMn0q3Y26EhyT +kHGC3+fSs76GU3aOh0tkqrFuz044wPatuymEbqVO4jGO3es3K54eJi5XTNyC8ZQQ2flzgEdfetWG +8Ujc5bcCAQRWM3pex4dWlfY2LWZmZWB+UdCOK2bWTjGcYIPHWiDu7o86pGysaUBDgAgEE4INfKn7 +X/7LsHiWyk+J/gTTYxq2njz722jTH2lB1YAfxAZr3crxDw1dPo9H89jiU/ZVYz+/0/rU+EdT11Jb +/wA94dkk0KhshgwYKVK9fWty0u4I7C1iKKm/EhbecDAJz+Z/SvpKsbRSt/SPqqSd7pnZfs3WMN78 +aklQB47GOWQtk5+SLH88/nX0usjXF+J1XOyHaSB9a8TOJJ4qMe0UCv7OTff/ADLE4C7ckKVGSD+d +VCyguCADkEHP1FefGStexy6t2IpkEgGQO+ADzmqc8UYVg6kqec57+tdEXdC2Mue0U7lKlt2SGB6d +6yL6wjmQIqHBGSCO4zz9Oa6ouyZLk7qxf0mCSK2ZEQqoBznqf1qb4feDl1b4h2kvkl1hJcnb/n1r +5ypW9jOo+6Z78JWoOXZfofaml2wtrKONRwFAHpwKuYwNxHT2rwE2j4qTTkzgPiB4mTRNPuJmkxhD +nntX5rfFy5vvHnxDm2yO8EUhAG4Yxmvp+FYuNedaXRHu4OlehzdzdsNOi0y3jsEOFweRnrVmw0hr +y+UKcopzuavelUes2ezGCSUUbmo2sVpbiNJFLOBnA5ByeP8AOaxLO1ee6MzW4OwEAnjJ55rKk/du +wdr2OT+DPj97e9FnfTnMr/Lx1PQCvtDwYFvdJinU7vNwTn+Eda93Fw5bs+DzONrSMP4l6R9os5la +PcChByeAMfp/9evizRJItP8AiJc2xYKvnlVO7jOT3rhoK8KifY9nJal0l5o+4PhwqjTrcBhyAent +XpmVZQCQDgA4r4LE/Gz6fGfxBzgLAykDHcGuG1u6j0/UbfULmIyRW86TOuMnarAkfiKxoycZ6b/1 +YeDjz80b76Hz/wDtEaRaapfahrenTpFo91bale2F1NJskuYldB5ak9eflHqM+9fJ9uWkt5JERgh4 +wT34P9K/WctlGdBNeXy8vkfKV78yT3Wjfmt/xOj8LadbXmo20moNtsrRBPcOxwCAT8o9SSQKjOov +e31xK3y+fId+F+VV9AB2/kO1dtk3ZmMpSjqivYWkVzq1kigNE9xGNoGeCRxx9a9T+Jqf2b4m8O6f +JEHtXh+ZVTqWUD8O2BWt7x0RMmotfM8pmvJdA8Tx30UTIIrmO4UcZwTmun8V2ltDrsPjbQV8zTbu +dZJCDu8pv4kOOR3/AEq6ctVLyFUp6ux1OrxQeJtZm0W8m/0uA+dYXQ6/7rf7JGPy/OfT/Dt1faek +yJm+t5dkkLHIyB1H1Hf68V0w01Rg2oxOm8I6vcS6tptlrcT21/pqsjNJwWUBgHGeuOMmvQNA8Qaj +e2TeJ9QUSQmSSIxoOXfO0fzFOcWpJnFUgnFr5L53Op8YaVpEPgGw1w2qfbtMDrAJiB/pBj24HuNx +H4V87fCXxbc+L/C/if4HeJNNluGvpm1TSXCHda36ZJHsrKMYHp7mvPlSlOo5R6NfnZ/g/wADTC1F +PDJS6SvfyTv/AJo6H9s3RZ20D4ReLTbIJtT8Jw2szEYLNAqYz74avCvBc8pXVFIAEkAD7T28xSf0 +FcML/U15foz0sDLmat5/5FnUYxHBbyPEwSWSVhkHgBgM9fpWZAxM8jGNQpfliT6mrou8bf1ud9ZW +kmb2tRBfssbyLKsluXj5Kjk9/wDJqjpLrZ3l2ImEimPYGJIwSB/Ks5a0rL+tQo3dWx738N7E2vh9 +WuEVZZ1OScfeIyR+p/OvIviO0Vp4+t5UO4PJEzDPzfex0/PvXz+AnKWOml1TPpMZTUcJG3Q9m8Gr +Nd6RFFLKUikUEqDktuYcA9uF/WvRbWKKCyFvGix7mPC9Tn/69eTjZWquCPUwcb0Iya/q5bt2MaiI +k7RwDnr7VdVVZCc4LHnPOO3+NcbstEdFRW1HpGFYOBnaM89hV+03B8ucHGT70r3Rz1DXsZQpADrt +4OMEZrWtXKnaD0HJHFZPyPKxCs9UbFvOJAuTnAAznFbFs4wSw+QDGPr/ADqGnbQ8SvG10bdm5Cp8 +3GOmea27N3IOGLEng96mPxHk1bM1baRgUBHOa1YFjuI2ilAZWUghu/HSvQp7WPLrpNM/ND9ub4Gj +4ZeNIPGHh+wI0TXJXkYRphYJvvMOOx5P518+xXyhtNAuI2Xa28YPyc9GJHJwM8cfjnH2WGqfWMPC +r11PoMvrOpRX3fp+h7N+yFGk3ijxJrkcZ3Q2rpGRkjMjYA/KvoTSxJKrSBuA3JPoCcCvAzd3x0r9 +El+CO9/wdF/Wv+ZaYsFwR16E59O9QllKuzEHIAIyfXrXnxdtEczVtSAyoFUhc4P5VBIQ2UABA4wB +35rrhfqQylcIoiABPC/MQc/hWbLsQNuA3ZwMDoMj8+K6Oa0WZxTcrGtocMt9GIrWHccfNkfhXp3w +k8H3mn6/JqV3asilQqEj15NfHYyTjOcX1PZxFWNLDON90fQQRRFGiL0HJzUFzIEDAE9ODXDN2Vz4 ++GrPlD9qXxxJp8J02zkzLICh29q+X9HsVt5X1C4XLuMndyd2e3FfY5FH2eDcusj7DDU7UIR7am7Z +2UlyhmaMl5GI57Ct2FbTS7bzJ0O9lI2/0xXdVl9iJ1wXMrswpb6XU7hkUrjOFA7Vet7aG2jCrhWw +TwetawjZqCIqNqLZ83eCJVh1e3miK5WRXZQemCDnnrxX6I/Cm9S78P2okVV3RLjaAOn09q+hzBe6 +mj4bMU5U0XPiL5MOkztsJcISo9TX592cnnfE6U3TDzDeMchcDrwP8+tebhFeFRvsduSt80V5o+8/ +hv8AvLC229fLXcfSvUCsflBR1PGK/O8S7yt5n1+N0mPSP90wQjIyPSuB8cIrWsyk8lSBgc1jSd5q +xpgG3UsfOXx8tH0fwEdN8S3E82oWbQ2mkohBS3hmJnlJ9yMAD3r5qa1Jlj0+IFpSAflHr0H1r9dy +uMVh7R2u7en/AA7PksVPnrSkvX7/AOrmrcTGFDYb8sQzSHaeSBwMD0GazrdklWRYW4UHJweMc5z7 +ZrtV7u5lZ8uiOh+G+gHxD430zSrcl1edWbBzhQc5+nXsK6v9ou+Sz+I9r9j+aOztY4gvXG1jk/y6 ++1bSjay7owc71lF9E/zRxHi6yTUvEdpJBMjpf7SoU5Cg4OPfBz+VWvDurXfh5tTSGKOa1Ds01s7F +ldD7du9RSk+VI3npq2Xl1+x8QazpV3FatZxmP7I5V+VyNq9eTjjP0r0bwbezFVuJ2U3MZbTrpQ2C +SGBV8evH5ZrspttanJWS5bB4ke4TVo7y/gKGASRF0znGdwz6gjv6mvS/gpcxHQHluh5sHni5jZ1+ +RCQTu/QfpWjTULo4cRrRaRc+KOkweL/hRdwWhnhnnuWTTS5KmSbl9/sGOVHfj8K8A+AWsfZ/jJ4N +D2zRXr6jDFfSNnMzb9oGPbofWuFJR5tLbm+Ek1RnCX978v8Ahz0/9vnxDZTXPg3wbpkoZdAtLh7h +IxuEYkddmRzjgZr548G2ZGi63d/aUCiHG4jBxhmx07kCvOsoYPXv+p2ZTdqErdG/v1/U1vEMMDad +occLFZXidpQR1ORyP58+tc7CCkoIljYtJk8Z2gkY/HrRh3an/Xdnp1ouU7NFzXzKj274ZkWNYyxb +vtGRVnQLKPUtRgj8kIJXGcE8ovJJyetRVl7Ojd9jTDr2lXQ960qOQQwWmlRt5mAWlfopx/gBXlXx +bsVtfE9gh+ZtqAsxzkgn8+ufwr5nLW1ir33TPqcdFLDWttY9i8DxMbf7Myj5WUBlPZQBx+v513DJ +l1RC/wAjZwK8vF/x3c9LBO9CJoLErMolJ3jtnGBxUvmbHK4++N3TiuRy7Fu8lboTxyKxG5s555HG +PWr6TuYtwyCeeDkn2Pr0/WqTdjmqR11L1owYAFiFxnFaltKzEAZJJwAelI86ujbtZNq7WOTnPB/M +VsWciswDMRGOT60rdGeFiFu0bVsxG0gHGcgg9a6CydWOWz15pJPm1PFq7mxbsvyA8jv9a0bWQKdr +H867qeup5lXex59+0j8LbX4u/CPWvDBhVrwQm4sXI5SdPmUg9s4x+Nfjjdtd2dz9juoGikglkhdW +BB3KcEfmK+kySd6c6XZ3+89PKZ/u5RfR/n/wzPqD9ja3+zeGNX1WVQPPvEQNjAwisSMf8CFe6aXH +5NqVZT94gHHbt+GCK8TNJOWNq67M9yelKL7pErqi7SjZyDn5vwqvIFQFc9TkkZGQP/11yQetjnfv +IqysEwA3H8WR0Hp1qks6k71cgeuMD69a7Y36mejWhTupwqOpzgjOc8DNUrO1k1K8isoWJaY7SB9e +wHSqqy5YNl4aKlNNn0L4F+GyadZxTXMGWADE45Jr0nRNOggcJGAPYV8TiKrq1eZmGMrqony7I6B0 +CgADp7Vy3i/WotH0+a4lcDaDjnoawq6aM83CwdSaij4J+KPiGTxV4ruZ5WzFEzKgzn15965y3hF0 +y26qcIoZsHnOf0r7vBR9hh4Q7I+79nypRXSx0thZBPnIwoHH+7WLrt800rQqwIQkHJ+o/wA/Srpe +/U9Am7R0GaXaLGvnEfwttPJPTP8AX9Kuxb5pGdh8icD3HPPv0rto3c2zhxMkoI+UdDkZNRgdGGQ4 +Oc4PUetfof8AA24e98O2XmYBVFwM9cgV9BjtKaZ8fj1eijsPiHAH0iZGQY8tsY6ivzzuYpbH4oXE +ZYZ+2DJOScE9K8rBvSovJnVkduZW7o+8vhcyNptuACQUU/XjmvUgVCLtJOOK/OsTrUfqz6/Gp86J +QAImVTyR17VwPjZWMEhJ3EDJGM/Wuemm6qReXtKep8j/ALTGqanrnimwsoLkNay2kEksYUYMoG3J +46gLjPpkfXyO6li0t5poyZLosU45Vc8HBP0r9jy6NsJTS6o+VrxUKsl5mZI0rSM5fP7vHGM9uuPf +P+TTJkuJIzaW6u7XDDLYJz6AH8P1rtppSdjOXw3R7n8M9K0r4WmG21cJd+Ktblht4LaMgm1iZwSS +ezYrgvjJqc+r+MLi/S08mMPJGj4B8zD9Qf8ACtJz56ittY4qcdZTb3/L+lcyvD8E0rRalKMf2cpd +SV4PBxx26/pWNcajPEttdoqjfu3gnHzA9OfxrJPlnY60oyiTzxi10dNSV8GNmJABwTkEf59q7nTd +b1GwvrM2kSS/ari3vEB+XzMjbgHGOhI59K6qTbaSMKqXK0zv/iboeqandWd/4cjlACFL2NPm8sn+ +Y7fSu9+EOkvovhC60a5JmMl3sJYcbVAwoB7ZP6V0NctN83c8qrLmoqK3N/xS8lzDp+neB9fgGoeH +7uK4utOR1Kypn/VuD0JG7HHU0eEvhra2fjzU/ifrPhaysbHSZFurO6QmJjKY9zl16HacnP8AOuN1 +VCLlJ6efe/8AX4kJ+yotLSburd79fuZ4/wDE74sfCjxX4R8U+HtG07U9U8V+JNQhWK6niC+UkbKF +VTnOMDp7nNePaSZtF8OXls+zzLi5eIgEEk7cHBye/wCFefXm6keRq2ui8j28rpVKfNKduvyVkrfg +TahMJ4Xmlk+a34VQcgDavOPqaoyQRNNbrARGfKUkMOhAJyMd6xp+6kenP4ncjjeSR3iMTNvyAnoT +0P5/pXo/w48LJfaoEuCrrFkDAwNo69+5/lXNmVZUsOzsy2jz17o9vt7SGyhKrEFyCoGOnYdPavEv +iWINS+IelWiHPlNuOOc45/8AZTXzeVP/AGjm8mfSZlf2DZ6t4JUJbLMQX28HHHXNdxAUkUq4I3DA +IPOec15+Jf72SO3DpqhFlsISN2OnTjrxTcENhgGHXrxmuXm1NOhJGpjYMeSCBgdqvo7k8gDkAGqV +7HPVSlqXLdwoBVxtzjHp/nite2ZU4zuwTgY60/JHm111NK3lY4AY4UcE+uf/ANVb1q4bYUHBBJJo +t2PGxMepu2TZARTnbW/YuQ2WAxjsacFqfP19GzagkOxSV5YY561egkUAcdupFdlNWPMqq5oQMrxG +NzkYINfkD+2p4Ck+Hvx+1y3twUstXI1O2XHy4kzvx9GB/OvayOSjjHB9V+RvgJuM3bsvz/4J69+z +NZHT/hhpyshBu7maducZ5C5/T9K9jUqlpbuc8psc55BXIryMY+bF1W/5mfU19KdNeRA7OSAGbGcZ +B5qGaUb8c85Bzzx/+uoirvY5LoqMoMQBJK9x3/8Ar1RlyGZWVlJwBg8c554rogmQ2jMmk8oFQCef +xyP8a7H4NaWdW8ZxSzIGSPLnA/Ksswmo4eVuxtRXLGdTyZ9bw29vb2QAUAYqCyhTzd6j2r5GfK5J +I8CMm4tstXUqRxkke+a+d/j54wkgsprG0kyxz3781EYupiIw8z1sjo+0rJvofJt9bzK7TFfmcnLZ +45NTaJBJJIsboCWGSoHfPt1r7hSSp6n2Lik9De1C7aygYKF8wL029PyrlEia7vAysT688/StMMrR +ckc9Z6o2X228JTOAF4J/M/nWbf39vBA6xE75CdvO0dO5/OvRoRsjyMRJt6Hy1pzFb2MkbcMME9ua +/QL9n2+juvDdqQ65iUAkHIbjr+fevcx+lJHzGNV6R6b41tXn0uY4z8hyc9K/PzxhGkfxXuTFEigT +ggnoT6/oea8jCXbmvI3yN+/b0/M+2fhIzNpFqrY4ReAfavU2DuA0bnPQ1+fYjldVuXmfaY1Wlp2G +rFc5YtMcAYAzXGeKY5wrRpkmQ7RuORyf8inRdONRRijHB3cnzaI+Uv2gI9Ntb+2tLObZcwRXLTSA +Dl1IKqM9sHrXhcolublpZIiXly4BOc8Z/wAffpX67hWnQjp0Pm8Qpe1lzMIFQrJJPxhQQwOCOfQf +56VsabqdnZaQ8NrYRnVJ5dyyuM7F4PC49zj0wfatoyaukjKZoeDL640/xnBqM91m9USMJn+Yo4Qg +Hn3/AC4p/juW3uZrcW4DNFGyyHPL8cEc+pzjHeiTXMiOVWZm208umJDoquri4lEkzZbcewXOOnOf +/wBVYtzbRwmWGWXbiV8pkkgZ9Bng8du9CspFLVWRouYbjQLeE+YsUlwUkUD7ybRtbPbBx69c10vj +WyOnw6P4djIku103zISpwzcjCe+cE1uuiRnJpO/qbfwR8S6xLrKRXtxKLeYBXV2JB/hB56HnnOOt +fRDaxp9nf317YzDyNJKPdhU5MhU/KB/3zz+vFdMl7vL3PJxMH7S62t+eh5p4+n13w6brxj4XsVuL +prVbvzAdyXMBA8zPrsbBx71U0D9qPxBF4Ri1XU/Ddte2dpdR2d3Zec4SUupKSHOf7jDHTpXn1XO1 +lb+tjqeHjiIRnezWmnp+aMfUviL8FNSmk8Q3ngS50DUNWE0Fv9gZZDFGRtM2OADnIH4ntzAPAPw5 +1i60vw/4f8ei1ldyQ19GQMk5JY4wOQeprklUU1z1VZ91tpdPRHfSU8OuWPvK3z/yKOt+A4vDsV9e +DUYfEP8ApLwu1gd0SMTgb3B9Aenp1rz8tIl27kIwjUxhs5Ix3/T9axSu3Z6dDvhPnXM1ZjvD1m9z +fRy7d0aAPtAB5Ocf59q96+G+km2VpmcEDrgYrxs7n7nKfQZPC75kd+I3eMuQAeSB+AGK8E1lU1P4 +qNOkqlYtxAXgD+AAc9+a83K4tVJyfSLPQzJp0kl3PafCVqYtPEsKqqsducdR0FdQiHdGVGcMOAOP +88V5lZt1ZPzPRo2jSivI0YiqxtuUhiMEnntUDrkMUPOM+wOf161zta6DjexFDIwIy2e+R61dhKMS +COnA7DNLViqKy0L1qQw2ytjBwMY9q1beQABerFQMds1qk2zzKy7GlbzbZQAxU59Mitm3mkXaFfPO +Gx1oTV9Tx8RHTU6TT5402qvOCcjrmt6yYD7w7Dg04Xbuz5vEJpts2reQsqkA8DpWhA4K4/keK7Fo +eZNaF6GQA8DAx6V8M/8ABT3wILvR/DHxGt4hutLh9OuHHZJBuXP/AAJcfjXoZbP2eOpN9dPvHhb+ +1Xz/ACMf4J2H9n/D3w9bMqjFrDIeefnO4/qa9IQiayaNlIIXzAw7+v6fyrzakr1pyv8AaZ9ZjX8M +V2RTfeflLZ5+9jtn/wDXVeRiCwQ8k5HHWqVtzibEOCBhjt74qjcoQrhVYt1GcZxntW9N23JluZUg +eRicYHcg+nevV/gHaR/2xLO2B5aBfmAzzz/WuPNZtUmdFJL6vO3Y+ib+Qrboc8EdjUukhmTcAOBm +vk4a1LnhNWpGT4v1dNN06aYuPlUkZr488ca6+ta1KZmLLvPB6d/1rpy+HtMS5LofUcP0VySmzzPU +iFcsH2oG+Ye2eP50/TcIyzltpwSec5GM819ZtDU+glrLQr65qoJ8tXwOec8n2+lV9IhMg86QHBUk +Fuuc8V10VywSOGu92S3VyPMEBLq0bbmwcZGOKwp4WvEdmO0biEA64xnH5V6dJJM8mo3uj52WJ7eV +ZDBtwwPUkfhX2n+zDqIl8OwwRMPkwvTI64yfw/lXtY3Wjc+cxaTos978Tsz6XKC3Hlnofb/69fB3 +j7TXt/idNKyN85woxgAc8D9ev8q8XC6SkvJjyO/tPuPrr4SSltLs2wMlA2B2GK9ciJEYBAzjkDsK +/PsXf2rS7n3OOupIlDkq2BnALYHf2rifFAjluoI3DLE067jnn1rPDK1eN+5jhFq2uzPlX9o/w883 +jG2tY1LzXhuXKAfcThgfyDflXgN5PtiggYLuXe21TyRyACe/3ePrX67gJe0owaPAxa9nIsaPpmoa +rCY7C3eWZyCMDICjPOfqf0rdvbXS/DUf2dr+C8vCDuEROIv9nPTNdkny+6tzja5tWZvh+Sc3Zuoz +hUyXOcZ64GKs31xCGZpkDTgZUp8wGQACe3/6+ack+ZWJTuiisN1p8gundiytySoO7JGD79cj6dqX +xLYvPqNvd29uPJ1C3E6KrA/MPkcEj3XP4imkm7kqXvNF7SdKgv8AUdK8/KabaqRcyBflQry2T69B ++VdTJap44e5dpGXUrB/tOmyJIA3loB+7x9AD35zW8LK1/wCrmVRt69v6Z1Hwygb4gmW48MwWq6zH +IUv9Pkfywi44nUdxnkj69K9KtoNRh0n7VqVzDbahulmLwgiGeGM+XuJPqxPBz0rrafLzt/1/Wp5d +evFz9mr8y/J/8MYPg7x5GusyeDtb0mN1n3iIxOpU7g2cj+EkA5AODn6Vxfiv4WXOg2HiHS9BtpLz +S9ZezuNOKp8yEzgBe2cbmX/CuOvSlP3kvP8ADU7aUlSm4N6Oz/H/AIc8v1LQdS0PxjNoHia0EF5p +SxoImYHZhQUXPbIIPf6VNHdyyar5zKuIonAYHGc/KoI6A815lWLi+XsvzPXpONWPP0buvSxc07xP +qvhq+ZtMvW2ruWYN8yzBgQSwPBzkmsLVLgz3PyOy70U4A45GCB+Z/KsoQtJz7m97OyR2/gfS2jt0 +d0GXfKsOhOOPxr3Pw5a/ZITEIwQMYz39/wDPpXzGa1Oeo0fV5XBRp8xsalfpY6dPcbsFEZiT3OM1 +4b4I8zVPEGoau67kllCIxbg4BH4cn9KWXJezq1PJInMJWlCL8z3/AEe1eKwht1XBVFB+tbawrGBg +qMgHOTnPHf8ACvGk7ybPXWkVFEnlhVDyqeQQCKZO6SBioxg5wDgH2rF6PUau1dEAQqcAg4GWz+VT +LIrNhTx+RPpSk2tga5i/bEHgHBLDAB6mtK0YxyAgbQRgNkcjPWtIt2uefXXc0rWVchmyRzk+3Sta +CfG0o2TgDgcfjQ9Tx68NbG9ps6qdpJDZGM9K6WzmUjJJLKADxRD4rnz2Li0zbtZdrKEPGeR2+laU +LMTyc5BPtXcmeRMuqwKjOcnqc15P+1d4CPxJ+BfiXQYo91zDbfbbYY582EhwPx24/Gt6c/Z1oVF0 +kvzM6LtVjfuj54+H1uNO8KacJlAENvAhyOgSMD+YNdLDqlncW0bwzAHYM4OO2K5Ye/KT82fX5in7 +Wy8hUBOCjDgbgATyM5/GmyW4BMhUAnHyjtWttThctLMhaLCbQO57d6oXagqTuPHHIzj16VtDUzk9 +UV4bRmXJjJJOCccg+tdT4I12TwrqInVcxEgNg89f1ry809+Lij1cHTU6Uot7nuFh4/0/WFhhhk3G +XCqO+a7/AEweXZbyOcAV8rSUlJuR4mNovDpQZ5j8Y9VNpocxViC4K4r5G1C+HmOX3YDE7vxr1cmX +NzS8z6zI4cuFu+rOX1S9WeTyFGWyxOD1wf8A69V7m7Gm2JAdRIoGMnhTivrIQbSidc5crepmeHob +nV7h5btBgsSABx37+net+4nWzQrGMBMfKP4v8muy1p8q6HBVldOxmxTyXAPQliO+MLnApC0NpG9y +z4QDOCQCTXbBpHmVNtD5nd0eVdy7+hbjgD19a+s/2V5o10vDSkyMSBGv3Rz1r2sX/BPAxabpSPpv +Vre9l0tyE4MeApNfGHxWjJ8ec5BUgEMMZGeua8Ck0pO3YnIv41j6O+EEr/2RagMuBGOfwr2ONt0Y +UsAVHQV8FirqpK3c+9x1lKyJ0VipwB0z+OK4bxrmO2eeEYaM7ge3FY0ZctRNrsZYJXnY+evjbfjU +fF2l6paxxu0elyFgQeZdmMH64P5mvmTVokh1AwEq7oihgcg5IHfHPUj86/WcpusPFeSPnsckptPp +oaqaxq8enpYiVobcqE2oMFgO2R1/OssEz3DCaM/MGOMZJOMjrXoRWtzglZuxtaVam1iihkVf3i/a +Jkxj5VPCn6n+VT6bBDrGqmaRkhUgs5IwO3t37fUVTd02JuysijqmpvBPPYXaCSNWPUcHkA/jz79a +p6lqBt7NLK0jVFVWUM4+fDckD05pK7aXQqyevU27O/TTvAsOjqAbnW5yzN3RExg+xY4/Kt34P6aF +8WJb6pPLBPEGMPO3cccD/CuiCU27mFVctKXzLHj/AMJXXhHxGNQsLmS0nuy1zbzxNsNxEWKyR56C +RHHHr07Cpfht8VdUsdfj0HxOWvdIK/ZJfOjJmiiYYJUd+CTTlOzcl2/r8PxOWpTVelzRWv6kFxZW +s3xXez8N6o32eSUvYzxuTkYIXJIyDlsV714R+JM2haLqdt4q0W0vbvQrRr+1vFfMbSoq+YR6fNhs +eqt0zilVqyjSvD+v6uTiaLxEEk7Ssvx0f6nydd6zfeIdU1LxZrEsb3d/PJeTEg8uzHAA68Z4qpYT +JFFKZoh5ssmAAcgqOo4Pr6V5k3dO39WPehBU4xguxXuLzyg0e0K7MQBjtjirumadPeiN1QYR8MDw +Bz1/n+dTN8kbm1NXkj2rwDpLJGJjF+7CgAEd/WvT9OUqdpBIAxyQOcV8TjJ89Vn2eFjyUtTivi94 +jGj+HjZxTBZ7o7FB+8OOoqr8H/D7fZoAYtpjj82XjGWbrn/PrXXT/dZc5r7T/I46v73GqPZHslso +j2IR3AYYPTNX4zJjaACOoB7c14absevK19SwvMQjYZ6kHv0qBY1ztPOazle2gRe5XmjQn5cfMckH +/PpSoY1cEr8ygDpnJ9KWr3Kd0rF6BssWUg5PPGKvxYDAKR0Kg571d+pwVb7F6JyrAEj5uMg9ua1b +YbWXMhOOQAad7K55mINyzuRGEJzwOCBzXS6dNkbt2RxkDoKUHaSPncXCyub1nKrFV3HpgD+tbdqS +RyMY7n6V6ENtTw6mjsy4gLDLDORTpLVLuCW2mQNHJGUIPIwRWkrpNo5r2d0fDHxa1SL4eXN54PiB +SWGWZU29QnVf0IrzHTPiHIlvbH7QpMjMGVW9NvP86vB0HGm5Pq2fc1ksSlVXVX+9HXaR8Qo2CPNO +AOmSep/yK6zT/GtlcjDTLz1IHPtWkqPZHFUpNLU049bsbiMNC4GTt5bgdKeDFdZEUituBBHXqanl +aVzhceV6mnYacWTfLEAcgknnd3zVHULi1iYozjJ6Y4z/AI14mKq3nZo93CLSyOv+EGky3etRShS0 +cZLE5yO2MelfS7strpy5GMDmvExjim5JdDyM4bnXjG580/HrxJuLWUbj1xu7V8ya7rltCfKILFjj +A7nt0r18goudO66s+rwSVHBxvvuZllIsga+mBUYyAfl7DHHfpWFdXp1a+NsgPlbgoIGeM9Ov0r6y +mryb7Gc5WjodXaQrpNuI1PzsAwCjnOP17VQv3MsqqARubLNuHHt09K1pq8rnBUlpYmNobOAOzHe/ +Qen+eK5XxZrbQ2gtYRkFcgkYOT1/H+ddUFzM4pWbPCZIZ0cAI7noABgV9P8A7IVw8mpXLvjcgDIm +OFOe2e/SvYxTXsZWPExKaoyufZd1GZdMdmXOV2kkdetfGf7QGli08V6fcMT+8dkcDvgjH86+eoyf +tGc+StRxKR7L8HWL6TagL91FByMcCva7T5owdoxjJ/oK+HxitVfqff453kmXYQWZgGxxjg1xfjl0 +trG4uLg4ijjZ2+gHNckU3NeqM8C0qlj5e8WXMGtWuma6rBFnnkIDDP7sDAOPfv7V4PrqrP4w1OXY +FihndmIO0bR2H+e9fr+AThSUX0R8/jmpVG1td/mzNur03Mv2mQr8z/KqknA9PwH8q2tHsTaxx6re +gIjbhFH/ABSYHP4c/wA67l7sbHDLWVx2nzyXNtqV+0g3hVGc4OSSBj0/DpTtFKGCaV4/lXbh8e+c +e/8AKqkvdaM0m5odrFkbma5nklAfeSPUsT39OtYVtCpWZLiLaqsN6lsEdAD9OazWxrvsadnc2+jz +PcajaNdL9nkito9p2rIYysbH6E5rtvh345u59Kt/DWqxodUjkRrKWQbXkjGDt3f3hjjPrj6duHm7 +8q/r+mcdeF5c1z3HU9E0H4k+GJdL1+Ly3RDc2N4FwttcY2yRPjoGOCCehzmvJdR+FevWmvT2GsQp +JaadCgivkGGmhfAVW/vDJxn+E89KqcUrqWi/r8np/wAOcmDqOE3SevVfhf8AzJUsvD/w3v7TxnZ6 +U2vQwwlpIxJsNvOFO3eBk5DH8hXndt461u40a68OyTo1rfqfNIQBlDMHKg9R0APtXnVZVJXWyX9O +56tOClPmb3tp2t/w5z19AIwthDMCGID8HIPGV6c/h6VHcXKJMsSEhEULgevcjp/k1ivM65PmdiBQ +k7KFJU7vlHbOMZr0fwfpDyiQrEdrMmFY9z35HPeuPHzVOnc7sDTc5pHt3h6xt7GxiiwCWGSAo59/ +8+lX7q7t9NtJb6eYJGiFnOTwvXn9K+HnJTk33Ps4pwiongVzrN18SfH6XMSk2FnL+7znAXIHpX0Z +4O0RdL05F2YMmGOeCfT9K9jN7YahTw66JffuzyMvvXxE6z21/wAjo40YFUBwV6kd6uxO6oASoI46 +f1/KvA+ye3JK9iSRzLGqg5IJJ+lDh1iHzBSD1Ud+cVm1dWDSOhXlXzGyQTtXkN64qElhKQBwSefz +qOt0X5Mswysib2OGI557Z6VoQyFGAJGCBz2P1q1fdHJUSsX7eVkAGMk8cjr3rUtplXaxJHrTWujP +Lrw6o2LeZSAQvQYNdDpUrhPLPBYA9cflVRueBi4LldzpdOkUv3z14rdtpMocnp17V6FNqx85WWpo +RODgEZIq5bsMcA8DArRq6Zys+If22fC5034m6V4hWAmDV7QxkgcCVCAf0IrwWXw/HPBC4Ufuogow +OSep5HfnrXo4epy0ovyPsMDJ1MNTflb7tP0KcmnXdnExiZx0YDdnn5ue/wDk1Wm8Q6vYMAwKleCQ +cYHIH+cV0KMajOmaaTb1H2/xRmsSQ8zYXBb6Z5/rXS+GfjZbef5dzMdpcNlv4hn6f171c8I+Vnnz +imz3Xwh4+stZEVjaHz5bjhVUZ59q7HVPAMkVl/amqW5aQAnA4Cj6evWvhswnLDVLdXsdcXGi43er +PR/gtoK2Nu05HyuRgEcgf5Nd1471tNK0mWRWxtQ45ANeHiqiafmzzK6dfG2Z8G/GP4h+bfXCC4DE +MQxzXjNjqk2t3JldP3cbhQQ45PI79eK+9yfCOhhVI+urSikqS6I27jUXmjNhZRuMYXoTj1INavh/ +RF02ya6uEAfBYZ65znH/ANevRUXGNu5yVZ2shZb1Z5jLKBGWPKgjAyP/ANdOsY/OmPmJwAO2Bjnt ++X5Vuro4pa7kmsXJjSQvjagITJyAOOvFeR6/em5u1dJyQp6sfvDueK6qSVzkjvc37fwBaWsKmY+f +KSQXByP84r1b4E6PJ4e1tmjHEkgVwc9ce9T7eVWMkzDHQgqDSR9gWiQzabll4xkA18nftJaVJLrl +reBHws6qoA6D2rzqU/3mp4OUvlxSO4+D7MNNhQ4GBjB7HHNe32agwAjnj06V8bjr+0kvNn6DjraW +7IvWMbEOpI6E5rzr4uSyJ4buokIVrgCAEnldxxn8s1zYa0sRFeaMcI7TZ8y/EKyjj+HumLbL+/t2 +uLjAB+5yQOO4GK8Cif7bLc+WxD3LqoycZPBy2fXB4r9ewN/ZXZ4GJtzNebLX2XTbO0WQyCa43kpG +QNq8gZJHX6fWmwXs7TI17KzrAfk79uAB3xXWnfVHL0sOs3WKSSKeQvHLuD4UDJ5x9P8APNaVki2l +lb6cGDNeNvZc87eOw9v51T2sTbqPubRwLiNwx2mRFAUjdjGBwcn/APVXPXt290qB2RU6MVADOM85 +NSlqOT0sTWLPEP7JvF3JcnEErkYQk9fSrl9pIt7e1uw8gu4tySheCsinqOeBtwc1Sk4vQLJrU9a+ +CfxfutPvvsHikLLbSJ9nM8pyjq3TzB6jHJHSvYNc8Mya54QluPD8sflxsHSPzN7Rqfvovqh/Lmu5 +SjLSX9f1+dmeHXi8NXVRbO1/6/rQ4Gz0bR9UsdUtLe3MCfZk87UBcYXzEySJFYAEAcA9eMHmvm62 +U2ayyMQWYkRkZznOPp/+uvPrqSclLvp6Ht4ecb2WvcgWaaFcxPvIJPzKDnPHQ/55qKSZpZjHvA3j +nCjBPHTaOv8A9eslbZnRu9Nzb8L6Mt/eKJUPlQ4Yk55x2xXtngbRYynmqoC5yPl4A6f4V89nFdcr +ij6PK6OqbPQI41iQuzBVRA+SOnGf614p8VviE3iK6fwt4ZZpEjYrOYv+WhB6DuQP6Z7GvHynD/WM +SpS+GOrPWzPE+xoPl3ei+Z2PwZ8Appdml/fwbZXILA9Cc17NaqEjL7cnlQOOgrmzXE/WcTJovL8P +7Cgk9y5GjOpfkN1/H8akUbiVLEnr0wOea4Lq1jt62JrfaHRTkjr/AJ/CpRtKqO4OTx0z1oeopaMh +lUBdzHkrgqBVZ4yEIc4zzz1BHFZbaFJjlCOEUZ4POD1NTwSsJAgPT5Se1NWbsjKa0szTguZA6nOQ +wwB2rTikAUkNk/hVLV2Z5laNlZGpYyMWUHqTkH0+tdDZ3MZkVegC4PNVtI8TFQvdI6bTJBtD4Iz7 +5rfs5CCFP1+ld1LVI+YxKs2akLhcMOOOAe9XoZCASBjPIzXTujgerPD/ANsTwmmvfC3+3EjDTaHc +rdZ7iM/K/wChB/Cvj3RpUuYAAAc857jH1rfDa0bdmz6XKpt4ZX6N/wCf6li7sIXj3lfvHJJGD35z ++VcvqujwzHaRlmVjyOMjjpXTRlqeo5NK5wniDQpAzvCvy7jwRxj8Oue1cNdxXVpMpDOrpn5C2cH6 +/iP1r6LCyU1ys8vEppXR9nfsLafaatFcahqoLTwsVjLcgD0H6/nX1R8RjLHawWmnxFnnbDNjIA9f +5V+UcTVXLM501snY25b16fNtZP8AA6jwXb2+kaREsrYKruYnjnrXiP7T3xo0zwxo81jb3KPdOpCR +7uT715WFoSx2LhRit2PBU3UxTqPZanwbqut3niPUJZZJCY3JzuYdecfhWpbSwafH5Cxjzdv3cc9D +j9K/V3TjTpxpRPVdRzk5M6Twpo1zNL9ruHOGx0ODtz04rX17V0tB9jtWLKowcnnOfc/5yazaUp2R +z1JdDn0ne5IWNizEZGB7+/6fWuw0exCWTXU4KjGSd3IPp+taWV7IwqSdrnK+KHlmBghYKWbAwc4H +HNebXtiGukiQ7wCAQBz9a6aSS1ME7ao9T8KmDXIo5VCqMtgdRwTmvXPAcVpY30aZHmF1z79c1z8r +V0jjx8+ak0fRFhcJHZ4T5uAME188ftEwrcqrImXWVGAHOcMPxri1VS54WV6YmN+5ofCJgLeMlh94 +ZB/OvcrJ2WNA3XrjOeK+Oxy/eNebP0XGO/K/JGlbBQjFTyR3ryj49PLH4JvrmABZLcpMGI44cZ/T +Nc2AS+uU2+6OfD6yaPmz4wXYsPDKy2bIYkhEaMDyN4HNeDwKswhiDqWfc7BSAGOf5HHoe9fr+Ci/ +ZXPAxMrzdiWK2ldoIGAUTsdue4BH/wBc/lU1hE0N7sXO1XUnIOdoGcn/AD610vRNmTs1ZkF84iuJ +YriLDFiVD9f0/Ht3rc8L6LNe5uoJt0jOlvFGRk+YzBQuCOePT2q7XRlJtaE9pZSXniqWzmLMkdw2 +4IuSSQRnA+nb0qh4y01NM1qeM24iguYwYXycAhcHP40bSSJTvuXPDWlWOteGLtdUm8mS2ISOYj5Y +3BypY9gf/ZecU+xs7q+06801282/tk+1Qqr/ADSomBInH+wcj/dp2XNZf1/TG5WWpd0xLa50aKCK +YDVUkE1rKAds8WAXQ+4H49e1eoaDpuo6Z4IuPF/g/UZTc2d1DPdWySbVRVVhJgHjack49sdq2cYW +5n/XY5q7bjaa0b/BnMfEHxTpvjfQLq1sdNn07VdGleW8CSYW4DY3EKBjng9+PTmvHHkSWQRqytgh +Rgj65+nIrkm3zNvc6MPB0qbhfW7IbqVY5WVVGSu1lXgDA/8ArUmkRRSTAxlhIxG1duRnPP0FZSdo +ts7KcW52R6z4V8OCLyowuwLl5GKcn25+ld4ni7wx4Ohc6jqUUZiQlIkbc59cAfU+1fH43nxVT2dJ +XZ9fg+XD0ueo7I848T/ErxR4+LaH4Q0y4tbRyUlkZSryDjOewGO3NdD8PvhRFpEi318oluCBuJBI +B445rqq8uVYb2EfjluzClzZniPbNWhHb/M9s0+BYY0giUKEAAU9e1a9sCCckckFc9K+UlK7ufRWX +LYtxMixqc9Bkj3zUiq5xIo4DdB1I5pKTsS7O7Y6MNuBDE45Iz1qd1LkLGpG31OOg+tNu2gpb3Ysi +F1VyDkZxz71DLCWQuEbI646dOntUve4oystRkcYQqpHYtk/SkDklW8vGDliPSiTUdCbOTuX4ZCXA +RsHGQSeKv20pMh3Nz2z37ULc4qse5s2coKBmGeSMZrVsZDAgbh9wwB/WtFZvQ8WvHdHS6ZdszruI +6Dj2xXSWFyBxn0PNddHRK58zjIWehuW0oYAN9MVfUkoVGRxgc116tHkv3WUfF2h2/iXwpqWg3SBo +721kiIPupA/WvzSs4p9G1S70mX5Xsp5IHUjJ+ViD/KtcL9uJ7mTzThOPo/z/AMjf+0q8SgjDEgHa +eT3rOuoCbho5BgHAz7j19ep/Ot4Xiz2W9NDndV0pWgCoFIckkYz/AJ61zd14LjvZTMEdVyTuzgkf +5/pXp0qrprmRi4qb1Po/9kbS5NL1SRFmbyncAoeob/Jr7G1i2srawN3dSL8i55r874iSnjJVFuzL +G80asIJdEfOvxR/aKs/DMM2mafeK0oXYgVsevX0r4u8d+KNW8b64b27meSRyByxIHYY54HSvc4Wy +z2C+tVVq9vQ9CVNUafJHd7lWw0+Owi8zcC8oKqMHOT0rpPDWhXV/OtzcxCQP/e9M/wCePrX1NWV2 +5Ci+WGp2V9Nb6XYPFBJjauSAOh7/AIdPzrh57xL68Z1GGYE4I4656d+BUUo2TZhKXM9TpfDGjmeY +SyAqcBsL9e9dLqszWts1tbJwgy2B1qk1cxqu7szz/wAS362jSOkuGIAOOpyMDArlBEYonvZY/NZm +J4OCvPPvXRTta5k9tSx4B8SXWmLHavMy7mYAk+v+fpXsvgrWhJq8bSzl2PQ5ODg/5/WqnBKbZx4h +c9Nn1R4fuY5NORidxKAknmvHfjnYLdxO8YUOvz/lXjSupu54mW+7iYvzK3wpYxxIrNgnB4PB/wA8 +17xp3MKhgPz7V8hjv4srdz9GxaTjF+RqQqhBUEDIx6V518WbCPUvCerWT/MGgbcD0wBmuXCc0cRC +b6NHPh0+Znwr488TT6xomm6dIvyyS4yOwQbcfljrXFWSyRZmjtmMUTD59vCgjjnHFfslGPJTPnMQ +06jX9bmlpYEt5BLGGKQo3ygZUnnnt3FRTWji5mmgBULmRD3ABxn0znn14zWqWuhN7qzL/jO3e18R +NBKcRrawzxZAGQyBiR68k1ueAGmS90mGNVCRajHduzEYAT5u3IGVxzV27GDd6bfdP8iloF5FfePL +x5JUUXDuYjtyA+Ce/b/EV6H8R/CenX/h+fUYUmLW/wDpaug4RsAOPoDg8+taOC5UyZS5Jq5578Ok +S/1S6snHnafexraXQdQNjMpMbY9Nwxkf3vequgXWp/D7xymlyQltU0+4IAlPyTAH/VnnlHUjB9T6 +DNLltJpf1/W4pt1Fyvr/AF/kdJ4l0e2sNRTXPDDTLpt7M1zawPuDRllJmt2/2k5wO4Jx0r1z4e6l +oWleH11K+t1n0nU7R31GMLzJGCUdwPUcMfYmtk703pv+fb9DnxHNKml1f5/8OeWfEPw5FoOrtrvh +28judB1C6icOoJwjKwwSBkqR/L2rye1t7gySzRW7vuJChFGfbtx1HH61xzTex2U5rlTegMsFuFMg +ZJUO9gyksc4yPT6dPxq1pk95HPv0yzZ3+7vUDIPpXHXs1absj0cPde9FXZ1NvYeNtajEcmpm1jGF +IUlQ4P0A9/Wui0P4U29zKZdTNxelE2FXfCj26fj+PSvGq42hhYuGHWvc9ujl9fFSUsQ9F0PUtE8G +adp0KrHB5KYGVUDr7dK6q1sraNDFEDgEHJWvmK9b2knJs+lp0+SKsi9FmIbVIbcQclQDj6+lW7aQ +ZZVy3HIA/r/nrXI2m7M0to2WonWRFAQcrkg5/Af1qYyrt8tSTwVyAOB/k1D30Gk9mTR741II69ST +jt71PGzbSCRuztC5602rszltcsDc3JA5GcZ4zUMg37ihyAef8/Wm1ZMxWjIZomwWUBdp57UiRqyj +cm3OBgnqKhu6uaX00Y+FiigjjDZyOx5rRtydu/I47n6UR6M5ayNW2ZdoYP8A99VsWM21FJPy9R64 +rboeRXi2joLPaTmNuCO/8q6CylZCBkDkYrek7HzWLV9zfs5xjIIxkE1rwOZFIDHpnHpXdB9zw6is +yypDoFDdvwr89v2jvDw8H/GfWFhgEUGoBb6IjgHcMN/49/OtcP8Axmn1X5Ho5RO1SUe6/VHJWV0Z +ERjtwAMg+/8Ak1qpbJOVkQYG09vw/rXU0os9tSunYqzWBmkETINqMBgjIH6/WryaDEsODEASeijk +HOPw7VdWp7OOpdBc07HS/DbXX8DaqLrkRuQxC8nNdT8Tf2gtZ1DSjp2lMY2cbTJgZAx2r5/EYD67 +ilJ7dTvrYeDlGrLdHzndQ6hqMzme3ErzE5dySSOv0Hf8+aoto8VivmPtDEjcehz0xn/CvplU9muS +JEYc75pMfpNi2p3YMinbuHDA4IPf8f613q3NvotiyKB5o+ZRjJ468de/+cGqn2Rz1ZW904HW9dmu +Ji7ozx4wMkgE9uPXPH4VX8KaVLqt8JSpVASSR0Hqf0raPu02yLJM9b0nToLaJ9qlTtAbtjisjxBO +lvHK/GFGEyQf5dqUFc5JyblY8l1a5Ml6bicByDuCHp9Ofp+tZmp6jK0RiiQsXBcqRnI/+t/Suumr +tXKdlF3KdvdRRwpK0Q3BtqsCBjk84/GvRvh/rNzceIbO2DBtzFAVYjjHWuhxumzinfksz9BfAXhm +OTQLa4nODJEGC47YFcP8b/BIi0afU7MFtkbF1JPT86+XqVl7XXueDhbxxEX5nmPwyiRHjVmycA8j +vgcV7vppVbZWBA4xnNfLY9/v5ep+k4i7pw9DWi8sbgxwckcnnFeNfH7V9d07w9Na6BYCZ7tTG8jk +gKvfGO5FLLaSr4uEG9Lo44zcE5Hwzf3JKRWt3br5251UcgruOeB36dziscrJaKVk8xJEn2uhAABA +A7fUe9fr0drHz1RPnbZd0dRbRh1DR/I4BJPzNkjAPtV2CGW7LCZWbehQHu2ST9G6+5q9ncT7kmuO +useFINYaTddaXiyuQTlvKZjsP4EY/Kt/4ZabdXfhzxNqwnMaWVoyoxXjzHwFGPUEn8605U4/10Oe +6jG3nb8Tk/BcEsvi/S9soPm3giBcEEjd1OCewr3vw48V94y17wTqKb7PU7ZLiJWII8xolLr+K8j6 +Vu7cv3GddOzfZX+5o8Zi09fhf8R/smo3OIEkaGYlCwMJzt4HXtg9se1bnxssINZuNP8AEGlSFLx9 +OR1aMnMyx4V+nU42t16E1lJ3kmV8TT6Nf8EseA72z8Y+GD4f1S6NpcXrEw3jNjyr+MAxufTcPlz9 +M1a8A+M9S0C7vPDPiGw/fWExSU87fnIVvlPUE7eMckminKzaX9f07hUhzNr5/wBf11I/H1trFpcj +QdLtoZdJuB+78g5WBpBuXK87PmwfTr0zXj8MiQtLBJLjzECN5i7jy2Mrx229eO/rWNVNN36mlBKc +VYuWelrIdtvD5jE7kYckn1+h/pXp/hLwpLlZLiQ7mAJTtXzmZYtU1ypn1uWYVSSbR6Xo+iW1uodw +HYgA56j8K27e2W2baqkKDgcDB7V8lVruc7s+mp0owVka0UaBQdg9Tnj1qdTGke/OTjj3/wA+1YSn +2NEnsWAjSSKCWJ4AJFSQBYlZcZcHgg/mKzu76lLayLayKwVUQEkYBPUn/CpY8QuHHBGCff2pKWt0 +JrTlZOkjM4JxjAOcc9OKkDKcuQQTxyP8+tOLe5MlpZFkMBtDHORjjj0/z+FSCPAckKe+F6EjvV20 +uc70EVAIpAVyCcfQ0z7P8/lhQSVPfFQ1fVEqVrjkh2IgdSeen+etWUjwwG0n5cYod7oym763LtuS +T5LDA6fhWzZbioIJGe4FXFroeZiF3NqxYq4Bc/KM4H51u2UzAmPeSBjFdEN0fO4tXvob1hIzxqxY +jb1rdtJyoOe9dkdrHg1lqXYZGD4wSDx9K+TP27PDcq/8I74ugQALK1lM2MDBwy8/ga3oaYiNupeX +TUcRG/n+TPnPSJkcHepCnOWVDjr7dzXU2c0RiDJkgnC5XDenQ/55rvmrvQ99uyaZsWlpEyCUryeh +9se/41LcINuPLHyjLMB171wYqb2R34CN5XZRvIjJHgvgc8nnHHP9axptNlu5AqRbsnHBI4qKNRRP +XnDmWqLkmjxWdqMoNy9sYP8An/GuOv7GW4uVRF2gtuJIyK6sNUdWTbMasFTjYu20KaVC0+VLgEnj +p2zg/wCeK5bU9Wv7mbyS7nBwGIxwfT+Rr0lHueRKSnL0KyxSX0iRsg3FkADqQcEHJ+nQc+ox0r0j +wT4Zaxtkdo8Hbkqy+tOcnGKREmkm0dFq9zFY2rW8MhwqKxZht6AZHU/xZA9cA8V5V4x14OphDBfm +5UHjH+SPzqqaba1OSC+0zz6S4klDTs5baT8+MkH09uagt7S91OZYbaTe0mVJ4OTxxntXY5KCv2No +L2jSsUIZcxKwTCtgDJ5PJ/wrsvhzqa2njWxcjJEwTkH0/wA/lXSlo0cD1ifqP4WuA2iWEseNptYi +Bj/ZFYXxMniHhvUjOMr9mlBPX+GviKyVr3PDor98l5/qfPfw0Qloy2MHAAznp1r3HSwJLVVU8rnP +6f414WYK9ZrzP0eu37KL8jTiADEnJz1Ga8U/aA1q+0aDT1tkVhdtLGCRnDFDg9eOB2qspp8+MhFn +Fz2i36/kfDfiOdpLiXUXYhnu2CJj7qhs9foR/kVRjdjpM+p3BDBp1YqSSCSenrjr6H3r9ajol9x4 +VS0rs3rS3e7l+yrK8mySJmDYA/eAttHoMkdO+a0NMSyS1QTQbmlY7WA6Hyzj9cU5Oysh017thltb +yx69caTbRKbbV/LSWMHh1Yhuh6YP0rsG01/AfwkLyOrS+INdkRkUZUwQjac/8CPT2rZu0Ls5aiSl +GPd/5v8AQ47wPbxWfjO0RiBPHfrGSFB2g8hh+DV1Os6rPbfEbxBDDcSRTRJZz20qnBQrCiE8fXNa +c3R/10Lml7T1T/Mt/FXS7f4l6KvxD0a1S3vLIi21KJujYUHcCfYnp/hVfxHDp0fwX0bWirpNGd9q +y/eSSOTY/PurJ7fLSk3GKv8A10OWN4xjB7p2/D/I4nwvq1n9suoL22+z/a1ZpEiOQWHzKy8fKeD1 +qbX7/UrPWF1W6dZ3kVbO4IbDTRkgoSR3H9FrKN4zO1t6M7vTvHotLXSPE9/aRfZJwNLuI/LDFyhJ +UE9eVbGemR278f8AEf4b6Jb39xr3hKV1sUdFuLeVADA7jcu31U/mMUsRP3Vft/X5EYam1WSjs9Px +sWvDfhkWKITJmUpuxtBGcZI/nXpGhwhY2Ibbu4AAA+ua+Cx9R1JNs/RMHCMY2R1FnFGVUKxZkOcn +r1ArTSJXIyf4QcfjxXjS01Z6RdgVgrKmWUjHNPRUIy5JwM8cVn0uT9rQsI2Qqxr90Z9OakcEncQQ +MHoevSod7amkWrpFmDy3OFj4DAjnpzSuzLKgDbhnB5PWl5oLa2kWY5hIwLKeMDaD29P5VKhCtvY8 +HrxnmtEla5m046FxSq/OQDtAP/16QNh1RDgE5I7E54o1e5zvcl3YcMG5Ddhxip2GSXjUAkYOfSp9 +DOXmMMQYZTjnGBxxU8RZCpCg4G3HvQk29DGTui6sXlyBmAzjPHHfH9K07ZmKbVIB+904/wA8VpH3 +tDz67Tjc0LCYxnJJPOCfX/Oa3dNl42lSSB1zW0VZ3PCxcdG0dBZMAqtknd3/AJ1tWs4YZBOTnOfr +XZTelj5+tHU04pMpk47ZHtXmP7T3hVPFfwh1W3UAz2jJcxFugZWFbwuqkJLuZYW8a8Ld0fCNpYX2 +jyLFNKY2wCdjAg55x9PatfTbx5ZkEi7f4AwPOc8kelerWjKlUakfRpJrTc6zTZnugIoQCVChsjGB +7fl+tbkuneXbqSoYnGfpXh42fJLlPay6N0Zx00Oy78Mp4AxjNa8GgxW8bTuQTwQMcf5/xrgqVmlo +ezFJOzRyXi2/SFdnQnAAA/D+dcPPrMOnvkEltpxx/F/n+Ve5lsfcR5mPa1RnxXdxqkxIYKo4YsMg +jqOPxFLdWwjIkztKnhl6jHGf/rV7c4taI8GNnqbXg3QoZpozJGWb72N3H1/z+deppDDaWqiNcYzy +Bzkf/qrjlK8rDxDaSPLPHXiZbGR4tz/MSN3c4PFeMa3rE93OVnYguQF2nBH9PSvRoR0uc8exNoVp +PdTIbdCArA5Lfr1616f4e8KRWtqpMS+aDkZAPzd65sfPkhZHpZfT9pVP/9k= diff --git a/openrouter-image-python.py b/openrouter-image-python.py new file mode 100644 index 0000000..24e8a34 --- /dev/null +++ b/openrouter-image-python.py @@ -0,0 +1,183 @@ +#!/usr/bin/env python3 +import base64 +import os +import mimetypes +import requests +from openai import OpenAI + +# Constants +OPENROUTER_API_KEY = "your_openrouter_api_key" # Replace with your actual key +IMAGE_PATH = "path/to/your/image.jpg" # Replace with your image path + +def image_to_base64(image_path): + """Convert an image file to base64 with data URI prefix""" + try: + # Determine MIME type + mime_type, _ = mimetypes.guess_type(image_path) + if not mime_type: + # Default to generic binary if type cannot be determined + mime_type = "application/octet-stream" + + # Read and encode the image + with open(image_path, "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()).decode("utf-8") + + # Return data URI + return f"data:{mime_type};base64,{encoded_string}" + except Exception as e: + print(f"Error converting image to base64: {e}") + raise + +def send_image_direct_api(base64_image, question="What's in this image?"): + """Send an image to OpenRouter using direct API call""" + try: + print("Sending image via direct API call...") + + headers = { + "Authorization": f"Bearer {OPENROUTER_API_KEY}", + "Content-Type": "application/json", + "HTTP-Referer": "https://your-site-url.com", # Optional + "X-Title": "Your Site Name" # Optional + } + + payload = { + "model": "anthropic/claude-3-opus", # Choose an appropriate model with vision capabilities + "messages": [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": question + }, + { + "type": "image_url", + "image_url": { + "url": base64_image + } + } + ] + } + ] + } + + response = requests.post( + "https://openrouter.ai/api/v1/chat/completions", + headers=headers, + json=payload + ) + + response.raise_for_status() # Raise exception for non-200 responses + data = response.json() + + print("Response from direct API:") + print(data["choices"][0]["message"]["content"]) + except Exception as e: + print(f"Error sending image via direct API: {e}") + if hasattr(e, "response") and e.response: + print(f"API error details: {e.response.text}") + +def send_image_openai_sdk(base64_image, question="What's in this image?"): + """Send an image to OpenRouter using OpenAI SDK""" + try: + print("Sending image via OpenAI SDK...") + + # Initialize the OpenAI client with OpenRouter base URL + client = OpenAI( + api_key=OPENROUTER_API_KEY, + base_url="https://openrouter.ai/api/v1", + default_headers={ + "HTTP-Referer": "https://your-site-url.com", # Optional + "X-Title": "Your Site Name" # Optional + } + ) + + # Create the message with text and image + completion = client.chat.completions.create( + model="anthropic/claude-3-opus", # Choose an appropriate model with vision capabilities + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": question + }, + { + "type": "image_url", + "image_url": { + "url": base64_image + } + } + ] + } + ] + ) + + print("Response from OpenAI SDK:") + print(completion.choices[0].message.content) + except Exception as e: + print(f"Error sending image via OpenAI SDK: {e}") + +def send_image_from_base64_file(base64_file_path, question="What's in this image?"): + """Use a pre-encoded base64 file (e.g., from bash script)""" + try: + print("Sending image from base64 file...") + + # Read the base64 data from file + with open(base64_file_path, "r") as file: + base64_data = file.read().strip() + + # Initialize the OpenAI client + client = OpenAI( + api_key=OPENROUTER_API_KEY, + base_url="https://openrouter.ai/api/v1" + ) + + # Create the message with text and image + completion = client.chat.completions.create( + model="anthropic/claude-3-opus", + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": question + }, + { + "type": "image_url", + "image_url": { + "url": base64_data + } + } + ] + } + ] + ) + + print("Response when using base64 file:") + print(completion.choices[0].message.content) + except Exception as e: + print(f"Error sending image from base64 file: {e}") + +def main(): + try: + # Convert the image to base64 + base64_image = image_to_base64(IMAGE_PATH) + print("Image converted to base64 successfully") + + # Example 1: Using direct API call + send_image_direct_api(base64_image) + + # Example 2: Using OpenAI SDK + send_image_openai_sdk(base64_image) + + # Example 3: Using a base64 file (if you have one) + # send_image_from_base64_file("path/to/base64.txt") + + except Exception as e: + print(f"Error in main function: {e}") + +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/openrouter-image-sdk.js b/openrouter-image-sdk.js new file mode 100644 index 0000000..2ca9d50 --- /dev/null +++ b/openrouter-image-sdk.js @@ -0,0 +1,247 @@ +/** + * OpenRouter Image Analysis using OpenAI SDK + * + * This script demonstrates how to analyze local images using OpenRouter's API + * through the OpenAI SDK. It supports both command-line usage and can be imported + * as a module for use in other applications. + * + * Usage: + * - Direct: node openrouter-image-sdk.js [prompt] + * - As module: import { analyzeImage } from './openrouter-image-sdk.js' + * + * Environment variables: + * - OPENROUTER_API_KEY: Your OpenRouter API key (required) + */ + +import 'dotenv/config'; +import { promises as fs } from 'fs'; +import path from 'path'; +import { fileURLToPath } from 'url'; +import { dirname } from 'path'; +import { OpenAI } from 'openai'; + +// ES Module compatibility +const __filename = fileURLToPath(import.meta.url); +const __dirname = dirname(__filename); + +// Constants +const DEFAULT_MODEL = 'qwen/qwen2.5-vl-32b-instruct:free'; +const MAX_RETRIES = 2; +const RETRY_DELAY = 1000; // milliseconds + +/** + * Convert a local image file to base64 format + * + * @param {string} filePath - Path to the image file + * @returns {Promise} - Base64 encoded image with data URI prefix + */ +export async function imageToBase64(filePath) { + try { + // Ensure the file exists + try { + await fs.access(filePath); + } catch (error) { + throw new Error(`Image file not found: ${filePath}`); + } + + // Read the file + const imageBuffer = await fs.readFile(filePath); + + // Determine MIME type based on file extension + const fileExt = path.extname(filePath).toLowerCase(); + let mimeType = 'application/octet-stream'; + + switch (fileExt) { + case '.png': + mimeType = 'image/png'; + break; + case '.jpg': + case '.jpeg': + mimeType = 'image/jpeg'; + break; + case '.webp': + mimeType = 'image/webp'; + break; + case '.gif': + mimeType = 'image/gif'; + break; + default: + console.warn(`Unknown file extension: ${fileExt}, using default MIME type`); + } + + // Convert to base64 and add the data URI prefix + const base64 = imageBuffer.toString('base64'); + return `data:${mimeType};base64,${base64}`; + } catch (error) { + console.error('Error converting image to base64:', error); + throw new Error(`Failed to convert image to base64: ${error.message}`); + } +} + +/** + * Sleep for a specified amount of time + * + * @param {number} ms - Milliseconds to sleep + * @returns {Promise} + */ +const sleep = (ms) => new Promise(resolve => setTimeout(resolve, ms)); + +/** + * Analyze an image using OpenRouter's API via OpenAI SDK + * + * @param {Object} options - Options for image analysis + * @param {string} options.imagePath - Path to the local image file + * @param {string} [options.imageBase64] - Base64 encoded image (alternative to imagePath) + * @param {string} [options.prompt="Please describe this image in detail."] - The prompt to send with the image + * @param {string} [options.model=DEFAULT_MODEL] - The model to use for analysis + * @param {string} [options.apiKey] - OpenRouter API key (defaults to OPENROUTER_API_KEY env var) + * @returns {Promise} - The analysis results + */ +export async function analyzeImage({ + imagePath, + imageBase64, + prompt = "Please describe this image in detail.", + model = DEFAULT_MODEL, + apiKey +}) { + // Check for API key + const openrouterApiKey = apiKey || process.env.OPENROUTER_API_KEY; + if (!openrouterApiKey) { + throw new Error('OpenRouter API key is required. Set OPENROUTER_API_KEY in your environment or pass it as an option.'); + } + + // Check that we have either imagePath or imageBase64 + if (!imagePath && !imageBase64) { + throw new Error('Either imagePath or imageBase64 must be provided.'); + } + + // Get base64 data if not provided + let base64Data = imageBase64; + if (!base64Data && imagePath) { + console.log(`Converting image at ${imagePath} to base64...`); + base64Data = await imageToBase64(imagePath); + console.log('Image converted successfully!'); + } + + // Initialize the OpenAI client with OpenRouter base URL + const openai = new OpenAI({ + apiKey: openrouterApiKey, + baseURL: 'https://openrouter.ai/api/v1', + defaultHeaders: { + 'HTTP-Referer': 'https://github.com/stabgan/openrouter-mcp-multimodal', + 'X-Title': 'OpenRouter Local Image Analysis' + } + }); + + // Implement retry logic + let lastError = null; + for (let attempt = 0; attempt <= MAX_RETRIES; attempt++) { + try { + if (attempt > 0) { + console.log(`Retry attempt ${attempt}/${MAX_RETRIES}...`); + await sleep(RETRY_DELAY * attempt); // Exponential backoff + } + + console.log(`Sending image analysis request to model: ${model}`); + + // Create the message with text and image + const completion = await openai.chat.completions.create({ + model, + messages: [ + { + role: 'user', + content: [ + { + type: 'text', + text: prompt + }, + { + type: 'image_url', + image_url: { + url: base64Data + } + } + ] + } + ] + }); + + // Extract the relevant information from the response + if (completion && completion.choices && completion.choices.length > 0) { + const result = { + analysis: completion.choices[0].message.content, + model: completion.model, + usage: completion.usage, + requestId: completion.id, + finishReason: completion.choices[0].finish_reason + }; + + return result; + } else { + throw new Error('Unexpected response structure from OpenRouter API.'); + } + } catch (error) { + lastError = error; + + // If this is a 402 Payment Required error, we won't retry + if (error.status === 402 || (error.response && error.response.status === 402)) { + console.error('Payment required error. Not retrying.'); + break; + } + + if (attempt === MAX_RETRIES) { + console.error('Maximum retry attempts reached.'); + } + } + } + + // If we've exhausted all retries, throw the last error + throw lastError || new Error('Failed to analyze image after multiple attempts.'); +} + +/** + * Command line interface for image analysis + */ +async function main() { + try { + const args = process.argv.slice(2); + + if (args.length === 0) { + console.log('Usage: node openrouter-image-sdk.js [prompt]'); + console.log('Example: node openrouter-image-sdk.js test.png "What objects do you see in this image?"'); + process.exit(0); + } + + const imagePath = args[0]; + const prompt = args[1] || "Please describe this image in detail. What do you see?"; + + console.log(`Analyzing image: ${imagePath}`); + console.log(`Prompt: ${prompt}`); + + const result = await analyzeImage({ imagePath, prompt }); + + console.log('\n----- Analysis Results -----\n'); + console.log(result.analysis); + console.log('\n----------------------------\n'); + + console.log('Model used:', result.model); + if (result.usage) { + console.log('Token usage:'); + console.log('- Prompt tokens:', result.usage.prompt_tokens); + console.log('- Completion tokens:', result.usage.completion_tokens); + console.log('- Total tokens:', result.usage.total_tokens); + } + } catch (error) { + console.error('Error:', error.message); + if (error.response) { + console.error('API error details:', JSON.stringify(error.response, null, 2)); + } + process.exit(1); + } +} + +// Run the main function directly +main().catch(error => { + console.error('Fatal error:', error); + process.exit(1); +}); \ No newline at end of file diff --git a/package-lock.json b/package-lock.json index af274fa..9cf7522 100644 --- a/package-lock.json +++ b/package-lock.json @@ -1,12 +1,12 @@ { "name": "@stabgan/openrouter-mcp-multimodal", - "version": "1.2.0", + "version": "1.3.0", "lockfileVersion": 3, "requires": true, "packages": { "": { "name": "@stabgan/openrouter-mcp-multimodal", - "version": "1.2.0", + "version": "1.3.0", "license": "MIT", "dependencies": { "@modelcontextprotocol/sdk": "^1.8.0", diff --git a/package.json b/package.json index 8fe32ed..d2c25e0 100644 --- a/package.json +++ b/package.json @@ -1,6 +1,6 @@ { "name": "@stabgan/openrouter-mcp-multimodal", - "version": "1.3.0", + "version": "1.4.0", "description": "MCP server for OpenRouter providing text chat and image analysis tools", "type": "module", "main": "dist/index.js", diff --git a/send_image_to_openrouter.js b/send_image_to_openrouter.js new file mode 100644 index 0000000..1863881 --- /dev/null +++ b/send_image_to_openrouter.js @@ -0,0 +1,259 @@ +// Send an image to OpenRouter using JavaScript +import { promises as fs } from 'fs'; +import path from 'path'; +import axios from 'axios'; +import { OpenAI } from 'openai'; +import { fileURLToPath } from 'url'; +import { dirname } from 'path'; + +console.log("Starting script..."); + +// Constants +const OPENROUTER_API_KEY = process.env.OPENROUTER_API_KEY || 'your_openrouter_api_key'; // Get from env or replace +const IMAGE_PATH = process.argv[2] || 'test.png'; // Get from command line or use default +const DEFAULT_MODEL = 'qwen/qwen2.5-vl-32b-instruct:free'; + +console.log(`Arguments: ${process.argv.join(', ')}`); +console.log(`Using image path: ${IMAGE_PATH}`); + +// Load environment variables from .env file +async function loadEnv() { + try { + const __filename = fileURLToPath(import.meta.url); + const __dirname = dirname(__filename); + const envPath = path.join(__dirname, '.env'); + const envFile = await fs.readFile(envPath, 'utf-8'); + + envFile.split('\n').forEach(line => { + const match = line.match(/^\s*([\w.-]+)\s*=\s*(.*)?\s*$/); + if (match) { + const key = match[1]; + let value = match[2] || ''; + + // Remove quotes if they exist + if (value.length > 0 && value.charAt(0) === '"' && value.charAt(value.length - 1) === '"') { + value = value.replace(/^"|"$/g, ''); + } + + process.env[key] = value; + } + }); + + console.log('Environment variables loaded from .env file'); + } catch (error) { + console.error('Error loading .env file:', error.message); + } +} + +/** + * Convert an image file to base64 + */ +async function imageToBase64(filePath) { + try { + // Read the file + const imageBuffer = await fs.readFile(filePath); + + // Determine MIME type based on file extension + const fileExt = path.extname(filePath).toLowerCase(); + let mimeType = 'application/octet-stream'; + + switch (fileExt) { + case '.png': + mimeType = 'image/png'; + break; + case '.jpg': + case '.jpeg': + mimeType = 'image/jpeg'; + break; + case '.webp': + mimeType = 'image/webp'; + break; + // Add other supported types as needed + } + + // Convert to base64 and add the data URI prefix + const base64 = imageBuffer.toString('base64'); + return `data:${mimeType};base64,${base64}`; + } catch (error) { + console.error('Error converting image to base64:', error); + throw error; + } +} + +/** + * Example 1: Send a base64 image using the MCP server analyze_image tool + */ +async function testMcpAnalyzeImage(base64Image, question = "What's in this image?") { + try { + console.log('Testing MCP analyze_image tool with base64 image...'); + + // This would normally be handled by the MCP server client + // This is a simulation of how to structure the data for the MCP server + console.log(` +To analyze the image using MCP, send this request to the MCP server: + +{ + "tool": "mcp_openrouter_analyze_image", + "arguments": { + "image_path": "${base64Image.substring(0, 50)}...", // Truncated for display + "question": "${question}", + "model": "${DEFAULT_MODEL}" + } +} + +The MCP server will convert the image path (which is already a base64 data URL) +and send it to OpenRouter in the correct format. +`); + } catch (error) { + console.error('Error testing MCP analyze_image:', error); + } +} + +/** + * Example 2: Send multiple base64 images using the MCP server multi_image_analysis tool + */ +async function testMcpMultiImageAnalysis(base64Images, prompt = "Describe these images in detail.") { + try { + console.log('Testing MCP multi_image_analysis tool with base64 images...'); + + // Create the images array for the MCP request + const images = base64Images.map(base64 => ({ url: base64 })); + + // This would normally be handled by the MCP server client + // This is a simulation of how to structure the data for the MCP server + console.log(` +To analyze multiple images using MCP, send this request to the MCP server: + +{ + "tool": "mcp_openrouter_multi_image_analysis", + "arguments": { + "images": [ + { "url": "${base64Images[0].substring(0, 50)}..." } // Truncated for display + ${base64Images.length > 1 ? `, { "url": "${base64Images[1].substring(0, 50)}..." }` : ''} + ${base64Images.length > 2 ? ', ...' : ''} + ], + "prompt": "${prompt}", + "model": "${DEFAULT_MODEL}" + } +} + +The MCP server will process these base64 images and send them to OpenRouter +in the correct format. +`); + } catch (error) { + console.error('Error testing MCP multi_image_analysis:', error); + } +} + +/** + * Example 3: Direct OpenRouter API call with base64 image (for comparison) + */ +async function sendImageDirectAPI(base64Image, question = "What's in this image?", apiKey) { + try { + console.log('Sending image directly to OpenRouter API (for comparison)...'); + + const response = await axios.post( + 'https://openrouter.ai/api/v1/chat/completions', + { + model: DEFAULT_MODEL, + messages: [ + { + role: 'user', + content: [ + { + type: 'text', + text: question + }, + { + type: 'image_url', + image_url: { + url: base64Image + } + } + ] + } + ] + }, + { + headers: { + 'Authorization': `Bearer ${apiKey}`, + 'Content-Type': 'application/json', + 'HTTP-Referer': 'https://github.com/yourusername/your-repo', + 'X-Title': 'MCP Server Demo' + } + } + ); + + console.log('\nDirect API response:'); + console.log(response.data.choices[0].message.content); + } catch (error) { + console.error('Error sending image via direct API:', error); + if (error.response) { + console.error('API error details:', error.response.data); + } + } +} + +/** + * Main function to run the examples + */ +async function main() { + try { + // Load environment variables from .env file + await loadEnv(); + + // Get API key from environment after loading + const apiKey = process.env.OPENROUTER_API_KEY || OPENROUTER_API_KEY; + + // Debug: Show if API key is set in environment + console.log(`API key from environment: ${process.env.OPENROUTER_API_KEY ? 'Yes (set)' : 'No (not set)'}`); + console.log(`Using API key: ${apiKey === 'your_openrouter_api_key' ? 'Default placeholder (update needed)' : 'From environment'}`); + + // Check if API key is provided + if (apiKey === 'your_openrouter_api_key') { + console.error('Please set the OPENROUTER_API_KEY environment variable or update the script.'); + return; + } + + console.log(`Converting image: ${IMAGE_PATH}`); + + // Check if the image file exists + try { + await fs.access(IMAGE_PATH); + console.log(`Image file exists: ${IMAGE_PATH}`); + } catch (err) { + console.error(`Error: Image file does not exist: ${IMAGE_PATH}`); + return; + } + + // Convert the image to base64 + const base64Image = await imageToBase64(IMAGE_PATH); + console.log('Image converted to base64 successfully.'); + console.log(`Base64 length: ${base64Image.length} characters`); + console.log(`Base64 starts with: ${base64Image.substring(0, 50)}...`); + + // For multiple images demo, we'll use the same image twice + const base64Images = [base64Image, base64Image]; + + // Example 1: MCP server with analyze_image + await testMcpAnalyzeImage(base64Image); + + // Example 2: MCP server with multi_image_analysis + await testMcpMultiImageAnalysis(base64Images); + + // Example 3: Direct API call (if API key is available) + if (apiKey !== 'your_openrouter_api_key') { + await sendImageDirectAPI(base64Image, "What's in this image?", apiKey); + } + + console.log('\nDone! You can now use the MCP server with base64 encoded images.'); + } catch (error) { + console.error('Error in main function:', error); + } +} + +// Run the main function directly +console.log("Running main function..."); +main().catch(error => { + console.error("Unhandled error in main:", error); +}); \ No newline at end of file diff --git a/send_image_to_openrouter.ts b/send_image_to_openrouter.ts new file mode 100644 index 0000000..1830094 --- /dev/null +++ b/send_image_to_openrouter.ts @@ -0,0 +1,160 @@ +import fs from 'fs/promises'; +import path from 'path'; +import OpenAI from 'openai'; +import axios from 'axios'; + +// Constants +const OPENROUTER_API_KEY = 'your_openrouter_api_key'; // Replace with your actual key +const IMAGE_PATH = 'path/to/your/image.jpg'; // Replace with your image path + +/** + * Convert an image file to base64 + */ +async function imageToBase64(filePath: string): Promise { + try { + // Read the file + const imageBuffer = await fs.readFile(filePath); + + // Determine MIME type based on file extension + const fileExt = path.extname(filePath).toLowerCase(); + let mimeType = 'application/octet-stream'; + + switch (fileExt) { + case '.png': + mimeType = 'image/png'; + break; + case '.jpg': + case '.jpeg': + mimeType = 'image/jpeg'; + break; + case '.webp': + mimeType = 'image/webp'; + break; + // Add other supported types as needed + } + + // Convert to base64 and add the data URI prefix + const base64 = imageBuffer.toString('base64'); + return `data:${mimeType};base64,${base64}`; + } catch (error) { + console.error('Error converting image to base64:', error); + throw error; + } +} + +/** + * Method 1: Send an image to OpenRouter using direct API call + */ +async function sendImageDirectAPI(base64Image: string, question: string = "What's in this image?"): Promise { + try { + console.log('Sending image via direct API call...'); + + const response = await axios.post( + 'https://openrouter.ai/api/v1/chat/completions', + { + model: 'anthropic/claude-3-opus', // Choose an appropriate model with vision capabilities + messages: [ + { + role: 'user', + content: [ + { + type: 'text', + text: question + }, + { + type: 'image_url', + image_url: { + url: base64Image + } + } + ] + } + ] + }, + { + headers: { + 'Authorization': `Bearer ${OPENROUTER_API_KEY}`, + 'Content-Type': 'application/json', + 'HTTP-Referer': 'https://your-site-url.com', // Optional + 'X-Title': 'Your Site Name' // Optional + } + } + ); + + console.log('Response from direct API:'); + console.log(response.data.choices[0].message.content); + } catch (error) { + console.error('Error sending image via direct API:', error); + if (axios.isAxiosError(error) && error.response) { + console.error('API error details:', error.response.data); + } + } +} + +/** + * Method 2: Send an image to OpenRouter using OpenAI SDK + */ +async function sendImageOpenAISDK(base64Image: string, question: string = "What's in this image?"): Promise { + try { + console.log('Sending image via OpenAI SDK...'); + + // Initialize the OpenAI client with OpenRouter base URL + const openai = new OpenAI({ + apiKey: OPENROUTER_API_KEY, + baseURL: 'https://openrouter.ai/api/v1', + defaultHeaders: { + 'HTTP-Referer': 'https://your-site-url.com', // Optional + 'X-Title': 'Your Site Name' // Optional + } + }); + + // Create the message with text and image + const completion = await openai.chat.completions.create({ + model: 'anthropic/claude-3-opus', // Choose an appropriate model with vision capabilities + messages: [ + { + role: 'user', + content: [ + { + type: 'text', + text: question + }, + { + type: 'image_url', + image_url: { + url: base64Image + } + } + ] + } + ] + }); + + console.log('Response from OpenAI SDK:'); + console.log(completion.choices[0].message.content); + } catch (error) { + console.error('Error sending image via OpenAI SDK:', error); + } +} + +/** + * Main function to run the examples + */ +async function main() { + try { + // Convert the image to base64 + const base64Image = await imageToBase64(IMAGE_PATH); + console.log('Image converted to base64 successfully'); + + // Example 1: Using direct API call + await sendImageDirectAPI(base64Image); + + // Example 2: Using OpenAI SDK + await sendImageOpenAISDK(base64Image); + } catch (error) { + console.error('Error in main function:', error); + } +} + +// Run the examples +main(); \ No newline at end of file diff --git a/src/index.ts b/src/index.ts index 585a315..c27c23c 100644 --- a/src/index.ts +++ b/src/index.ts @@ -15,7 +15,7 @@ class OpenRouterMultimodalServer { constructor() { // Retrieve API key and default model from environment variables const apiKey = process.env.OPENROUTER_API_KEY; - const defaultModel = process.env.DEFAULT_MODEL || DEFAULT_MODEL; + const defaultModel = process.env.OPENROUTER_DEFAULT_MODEL || DEFAULT_MODEL; // Check if API key is provided if (!apiKey) { diff --git a/src/tool-handlers.ts b/src/tool-handlers.ts index 6811ed1..0adb55e 100644 --- a/src/tool-handlers.ts +++ b/src/tool-handlers.ts @@ -137,7 +137,7 @@ export class ToolHandlers { properties: { image_path: { type: 'string', - description: 'Path to the image file to analyze (must be an absolute path)', + description: 'Path to the image file to analyze (can be an absolute file path, URL, or base64 data URL starting with "data:")', }, question: { type: 'string', @@ -167,7 +167,7 @@ export class ToolHandlers { properties: { url: { type: 'string', - description: 'URL or data URL of the image (use file:// URL prefix for local files, http(s):// for web images, or data: for base64 encoded images)', + description: 'URL or data URL of the image (use http(s):// for web images, absolute file paths for local files, or data:image/xxx;base64,... for base64 encoded images)', }, alt: { type: 'string', diff --git a/src/tool-handlers/analyze-image.ts b/src/tool-handlers/analyze-image.ts index 13e72ef..785aa87 100644 --- a/src/tool-handlers/analyze-image.ts +++ b/src/tool-handlers/analyze-image.ts @@ -1,14 +1,32 @@ import path from 'path'; import { promises as fs } from 'fs'; -import sharp from 'sharp'; +import fetch from 'node-fetch'; import { McpError, ErrorCode } from '@modelcontextprotocol/sdk/types.js'; import OpenAI from 'openai'; -import fetch from 'node-fetch'; import { findSuitableFreeModel } from './multi-image-analysis.js'; // Default model for image analysis const DEFAULT_FREE_MODEL = 'qwen/qwen2.5-vl-32b-instruct:free'; +let sharp: any; +try { + sharp = require('sharp'); +} catch (e) { + console.error('Warning: sharp module not available, using fallback image processing'); + // Mock implementation that just passes through the base64 data + sharp = (buffer: Buffer) => ({ + metadata: async () => ({ width: 800, height: 600 }), + resize: () => ({ + jpeg: () => ({ + toBuffer: async () => buffer + }) + }), + jpeg: () => ({ + toBuffer: async () => buffer + }) + }); +} + export interface AnalyzeImageToolRequest { image_path: string; question?: string; @@ -49,10 +67,34 @@ async function fetchImageAsBuffer(url: string): Promise { } } +/** + * Processes an image with minimal processing when sharp isn't available + */ +async function processImageFallback(buffer: Buffer): Promise { + try { + // Just return the buffer as base64 without processing + return buffer.toString('base64'); + } catch (error) { + console.error('Error in fallback image processing:', error); + throw error; + } +} + async function processImage(buffer: Buffer): Promise { try { + if (typeof sharp !== 'function') { + console.warn('Using fallback image processing (sharp not available)'); + return processImageFallback(buffer); + } + // Get image metadata - const metadata = await sharp(buffer).metadata(); + let metadata; + try { + metadata = await sharp(buffer).metadata(); + } catch (error) { + console.warn('Error getting image metadata, using fallback:', error); + return processImageFallback(buffer); + } // Calculate dimensions to keep base64 size reasonable const MAX_DIMENSION = 800; @@ -81,39 +123,56 @@ async function processImage(buffer: Buffer): Promise { return jpegBuffer.toString('base64'); } catch (error) { - console.error('Error processing image:', error); - throw error; + console.error('Error processing image, using fallback:', error); + return processImageFallback(buffer); } } /** - * Converts the image at the given path to a base64 string + * Processes an image from a path or base64 string to a proper base64 format for APIs */ -async function imageToBase64(imagePath: string): Promise<{ base64: string; mimeType: string }> { +async function prepareImage(imagePath: string): Promise<{ base64: string; mimeType: string }> { try { - // Ensure the image path is absolute - if (!path.isAbsolute(imagePath)) { - throw new McpError( - ErrorCode.InvalidParams, - 'Image path must be absolute' - ); + // Check if already a base64 data URL + if (imagePath.startsWith('data:')) { + const matches = imagePath.match(/^data:([A-Za-z-+\/]+);base64,(.+)$/); + if (!matches || matches.length !== 3) { + throw new McpError(ErrorCode.InvalidParams, 'Invalid base64 data URL format'); + } + return { base64: matches[2], mimeType: matches[1] }; + } + + // Check if image is a URL + if (imagePath.startsWith('http://') || imagePath.startsWith('https://')) { + try { + const buffer = await fetchImageAsBuffer(imagePath); + const processed = await processImage(buffer); + return { base64: processed, mimeType: 'image/jpeg' }; // We convert everything to JPEG + } catch (error: any) { + throw new McpError(ErrorCode.InvalidParams, `Failed to fetch image from URL: ${error.message}`); + } + } + + // Handle file paths + let absolutePath = imagePath; + + // Ensure the image path is absolute if it's a file path + if (!imagePath.startsWith('data:') && !path.isAbsolute(imagePath)) { + throw new McpError(ErrorCode.InvalidParams, 'Image path must be absolute'); } - // Check if the file exists try { - await fs.access(imagePath); + // Check if the file exists + await fs.access(absolutePath); } catch (error) { - throw new McpError( - ErrorCode.InvalidParams, - `File not found: ${imagePath}` - ); + throw new McpError(ErrorCode.InvalidParams, `File not found: ${absolutePath}`); } // Read the file as a buffer - const buffer = await fs.readFile(imagePath); + const buffer = await fs.readFile(absolutePath); // Determine MIME type from file extension - const extension = path.extname(imagePath).toLowerCase(); + const extension = path.extname(absolutePath).toLowerCase(); let mimeType: string; switch (extension) { @@ -137,12 +196,11 @@ async function imageToBase64(imagePath: string): Promise<{ base64: string; mimeT mimeType = 'application/octet-stream'; } - // Convert buffer to base64 - const base64 = buffer.toString('base64'); - - return { base64, mimeType }; + // Process and optimize the image + const processed = await processImage(buffer); + return { base64: processed, mimeType }; } catch (error) { - console.error('Error converting image to base64:', error); + console.error('Error preparing image:', error); throw error; } } @@ -160,23 +218,21 @@ export async function handleAnalyzeImage( try { // Validate inputs if (!args.image_path) { - throw new McpError(ErrorCode.InvalidParams, 'An image path is required'); + throw new McpError(ErrorCode.InvalidParams, 'An image path, URL, or base64 data is required'); } - if (!args.question) { - throw new McpError(ErrorCode.InvalidParams, 'A question about the image is required'); - } + const question = args.question || "What's in this image?"; - console.error(`Processing image: ${args.image_path}`); + console.error(`Processing image: ${args.image_path.substring(0, 100)}${args.image_path.length > 100 ? '...' : ''}`); // Convert the image to base64 - const { base64, mimeType } = await imageToBase64(args.image_path); + const { base64, mimeType } = await prepareImage(args.image_path); // Create the content array for the OpenAI API const content = [ { type: 'text', - text: args.question + text: question }, { type: 'image_url', diff --git a/src/tool-handlers/multi-image-analysis.ts b/src/tool-handlers/multi-image-analysis.ts index 850c45e..181dd14 100644 --- a/src/tool-handlers/multi-image-analysis.ts +++ b/src/tool-handlers/multi-image-analysis.ts @@ -1,5 +1,6 @@ import fetch from 'node-fetch'; -import sharp from 'sharp'; +// Remove the sharp import to avoid conflicts with our dynamic import +// import sharp from 'sharp'; import { McpError, ErrorCode } from '@modelcontextprotocol/sdk/types.js'; import OpenAI from 'openai'; import path from 'path'; @@ -8,6 +9,26 @@ import { tmpdir } from 'os'; // Remove uuid import as we'll use a simple random string generator instead // import { v4 as uuidv4 } from 'uuid'; +// Setup sharp with fallback +let sharp: any; +try { + sharp = require('sharp'); +} catch (e) { + console.error('Warning: sharp module not available, using fallback image processing'); + // Mock implementation that just passes through the base64 data + sharp = (buffer: Buffer) => ({ + metadata: async () => ({ width: 800, height: 600 }), + resize: () => ({ + jpeg: () => ({ + toBuffer: async () => buffer + }) + }), + jpeg: () => ({ + toBuffer: async () => buffer + }) + }); +} + // Default model for image analysis const DEFAULT_FREE_MODEL = 'qwen/qwen2.5-vl-32b-instruct:free'; @@ -149,13 +170,25 @@ async function fetchImageAsBuffer(url: string): Promise { */ async function processImage(buffer: Buffer, mimeType: string): Promise { try { + if (typeof sharp !== 'function') { + console.warn('Using fallback image processing (sharp not available)'); + return processImageFallback(buffer, mimeType); + } + // Create a temporary directory for processing if needed const tempDir = path.join(tmpdir(), `openrouter-mcp-${generateRandomId()}`); await fs.mkdir(tempDir, { recursive: true }); // Get image info let sharpInstance = sharp(buffer); - const metadata = await sharpInstance.metadata(); + let metadata; + + try { + metadata = await sharpInstance.metadata(); + } catch (error) { + console.warn('Error getting image metadata, using fallback:', error); + return processImageFallback(buffer, mimeType); + } // Skip processing for small images if (metadata.width && metadata.height && @@ -177,19 +210,20 @@ async function processImage(buffer: Buffer, mimeType: string): Promise { } } - // Convert to JPEG for consistency and small size - const processedBuffer = await sharpInstance - .jpeg({ quality: JPEG_QUALITY }) - .toBuffer(); - - return processedBuffer.toString('base64'); + try { + // Convert to JPEG for consistency and small size + const processedBuffer = await sharpInstance + .jpeg({ quality: JPEG_QUALITY }) + .toBuffer(); + + return processedBuffer.toString('base64'); + } catch (error) { + console.warn('Error in final image processing, using fallback:', error); + return processImageFallback(buffer, mimeType); + } } catch (error) { - console.error('Error processing image:', error); - - // If sharp processing fails, return the original buffer - // This is a fallback to ensure we don't completely fail on processing errors - console.error('Returning original image without processing'); - return buffer.toString('base64'); + console.error('Error processing image, using fallback:', error); + return processImageFallback(buffer, mimeType); } } @@ -265,7 +299,7 @@ export async function findSuitableFreeModel(openai: OpenAI): Promise { } /** - * Process and analyze multiple images using OpenRouter + * Main handler for multi-image analysis */ export async function handleMultiImageAnalysis( request: { params: { arguments: MultiImageAnalysisToolRequest } }, @@ -276,65 +310,50 @@ export async function handleMultiImageAnalysis( try { // Validate inputs - if (!args.images || args.images.length === 0) { + if (!args.images || !Array.isArray(args.images) || args.images.length === 0) { throw new McpError(ErrorCode.InvalidParams, 'At least one image is required'); } if (!args.prompt) { - throw new McpError(ErrorCode.InvalidParams, 'A prompt is required'); + throw new McpError(ErrorCode.InvalidParams, 'A prompt for analyzing the images is required'); } - // Prepare content array for the message - const content: Array = [{ - type: 'text', - text: args.prompt - }]; + console.error(`Processing ${args.images.length} images`); - // Track successful and failed images for reporting - const successfulImages = []; - const failedImages = []; - - // Process each image - for (const [index, image] of args.images.entries()) { - try { - console.error(`Processing image ${index + 1}/${args.images.length}: ${image.url.substring(0, 50)}...`); - - // Get MIME type - const mimeType = getMimeType(image.url); - - // Fetch and process the image - const imageBuffer = await fetchImageAsBuffer(image.url); - const base64Image = await processImage(imageBuffer, mimeType); - - // Use JPEG as the output format for consistency - const outputMimeType = 'image/jpeg'; - - // Add to content - content.push({ - type: 'image_url', - image_url: { - url: `data:${outputMimeType};base64,${base64Image}` + // Process each image and convert to base64 if needed + const processedImages = await Promise.all( + args.images.map(async (image, index) => { + try { + // Skip processing if already a data URL + if (image.url.startsWith('data:')) { + console.error(`Image ${index + 1} is already in base64 format`); + return image; } - }); - - successfulImages.push(image.url); - } catch (error) { - console.error(`Error processing image ${index + 1} (${image.url.substring(0, 30)}...):`, error); - failedImages.push({url: image.url, error: error instanceof Error ? error.message : String(error)}); - // Continue with other images if one fails - } - } - - // If no images were successfully processed - if (content.length === 1) { - const errorDetails = failedImages.map(img => `${img.url.substring(0, 30)}...: ${img.error}`).join('; '); - throw new Error(`Failed to process any of the provided images. Errors: ${errorDetails}`); - } + + console.error(`Processing image ${index + 1}: ${image.url.substring(0, 100)}${image.url.length > 100 ? '...' : ''}`); + + // Get MIME type + const mimeType = getMimeType(image.url); + + // Fetch and process the image + const buffer = await fetchImageAsBuffer(image.url); + const base64 = await processImage(buffer, mimeType); + + return { + url: `data:${mimeType === 'application/octet-stream' ? 'image/jpeg' : mimeType};base64,${base64}`, + alt: image.alt + }; + } catch (error: any) { + console.error(`Error processing image ${index + 1}:`, error); + throw new Error(`Failed to process image ${index + 1}: ${image.url}. Error: ${error.message}`); + } + }) + ); // Select model with priority: // 1. User-specified model // 2. Default model from environment - // 3. Default free vision model (qwen/qwen2.5-vl-32b-instruct:free) + // 3. Default free vision model let model = args.model || defaultModel || DEFAULT_FREE_MODEL; // If a model is specified but not our default free model, verify it exists @@ -348,7 +367,30 @@ export async function handleMultiImageAnalysis( } console.error(`Making API call with model: ${model}`); - console.error(`Successfully processed ${successfulImages.length} images, ${failedImages.length} failed`); + + // Build content array for the API call + const content: Array<{ + type: string; + text?: string; + image_url?: { + url: string + } + }> = [ + { + type: 'text', + text: args.prompt + } + ]; + + // Add each processed image to the content array + processedImages.forEach(image => { + content.push({ + type: 'image_url', + image_url: { + url: image.url + } + }); + }); // Make the API call const completion = await openai.chat.completions.create({ @@ -359,16 +401,19 @@ export async function handleMultiImageAnalysis( }] as any }); - // Format the response + // Get response text and format if requested let responseText = completion.choices[0].message.content || ''; - // Add information about failed images if any - if (failedImages.length > 0) { - const formattedErrors = args.markdown_response !== false - ? `\n\n---\n\n**Note:** ${failedImages.length} image(s) could not be processed:\n${failedImages.map((img, i) => `- Image ${i+1}: ${img.error}`).join('\n')}` - : `\n\nNote: ${failedImages.length} image(s) could not be processed: ${failedImages.map((img, i) => `Image ${i+1}: ${img.error}`).join('; ')}`; - - responseText += formattedErrors; + // Format as markdown if requested + if (args.markdown_response) { + // Simple formatting enhancements + responseText = responseText + // Add horizontal rule after sections + .replace(/^(#{1,3}.*)/gm, '$1\n\n---') + // Ensure proper spacing for lists + .replace(/^(\s*[-*•]\s.+)$/gm, '\n$1') + // Convert plain URLs to markdown links + .replace(/(https?:\/\/[^\s]+)/g, '[$1]($1)'); } // Return the analysis result @@ -381,12 +426,10 @@ export async function handleMultiImageAnalysis( ], metadata: { model: completion.model, - usage: completion.usage, - successful_images: successfulImages.length, - failed_images: failedImages.length + usage: completion.usage } }; - } catch (error) { + } catch (error: any) { console.error('Error in multi-image analysis:', error); if (error instanceof McpError) { @@ -397,14 +440,27 @@ export async function handleMultiImageAnalysis( content: [ { type: 'text', - text: `Error analyzing images: ${error instanceof Error ? error.message : String(error)}`, + text: `Error analyzing images: ${error.message}`, }, ], isError: true, metadata: { - error_type: error instanceof Error ? error.constructor.name : 'Unknown', - error_message: error instanceof Error ? error.message : String(error) + error_type: error.constructor.name, + error_message: error.message } }; } } + +/** + * Processes an image with minimal processing when sharp isn't available + */ +async function processImageFallback(buffer: Buffer, mimeType: string): Promise { + try { + // Just return the buffer as base64 without processing + return buffer.toString('base64'); + } catch (error) { + console.error('Error in fallback image processing:', error); + throw error; + } +} diff --git a/start-server.js b/start-server.js new file mode 100644 index 0000000..2158210 --- /dev/null +++ b/start-server.js @@ -0,0 +1,65 @@ +// Load environment variables and start the MCP server +import { promises as fs } from 'fs'; +import path from 'path'; +import { fileURLToPath } from 'url'; +import { dirname } from 'path'; +import { spawn } from 'child_process'; + +// Get current directory +const __filename = fileURLToPath(import.meta.url); +const __dirname = dirname(__filename); + +// Path to .env file +const envPath = path.join(__dirname, '.env'); + +async function loadEnvAndStartServer() { + try { + console.log('Loading environment variables from .env file...'); + + // Read .env file + const envContent = await fs.readFile(envPath, 'utf8'); + + // Parse .env file and set environment variables + const envVars = {}; + envContent.split('\n').forEach(line => { + const match = line.match(/^\s*([\w.-]+)\s*=\s*(.*)?\s*$/); + if (match) { + const key = match[1]; + let value = match[2] || ''; + + // Remove quotes if they exist + if (value.length > 0 && value.charAt(0) === '"' && value.charAt(value.length - 1) === '"') { + value = value.replace(/^"|"$/g, ''); + } + + envVars[key] = value; + process.env[key] = value; + } + }); + + console.log('Environment variables loaded successfully'); + console.log(`API Key found: ${process.env.OPENROUTER_API_KEY ? 'Yes' : 'No'}`); + + // Start the server process with environment variables + console.log('Starting MCP server...'); + const serverProcess = spawn('node', ['dist/index.js'], { + env: { ...process.env, ...envVars }, + stdio: 'inherit' + }); + + // Handle server process events + serverProcess.on('close', (code) => { + console.log(`MCP server exited with code ${code}`); + }); + + serverProcess.on('error', (err) => { + console.error('Failed to start MCP server:', err); + }); + + } catch (error) { + console.error('Error:', error); + } +} + +// Run the function +loadEnvAndStartServer(); \ No newline at end of file diff --git a/test-openai-sdk.js b/test-openai-sdk.js new file mode 100644 index 0000000..649849b --- /dev/null +++ b/test-openai-sdk.js @@ -0,0 +1,155 @@ +import 'dotenv/config'; +import { promises as fs } from 'fs'; +import path from 'path'; +import { fileURLToPath } from 'url'; +import { dirname } from 'path'; +import { OpenAI } from 'openai'; + +// Get the directory name for ES modules +const __filename = fileURLToPath(import.meta.url); +const __dirname = dirname(__filename); + +// Constants +const TEST_IMAGE_PATH = 'test.png'; // Adjust to your image path + +/** + * Convert an image file to base64 + */ +async function imageToBase64(filePath) { + try { + // Read the file + const imageBuffer = await fs.readFile(filePath); + + // Determine MIME type based on file extension + const fileExt = path.extname(filePath).toLowerCase(); + let mimeType = 'application/octet-stream'; + + switch (fileExt) { + case '.png': + mimeType = 'image/png'; + break; + case '.jpg': + case '.jpeg': + mimeType = 'image/jpeg'; + break; + case '.webp': + mimeType = 'image/webp'; + break; + default: + console.log(`Using default MIME type for extension: ${fileExt}`); + } + + // Convert to base64 and add the data URI prefix + const base64 = imageBuffer.toString('base64'); + return `data:${mimeType};base64,${base64}`; + } catch (error) { + console.error('Error converting image to base64:', error); + throw error; + } +} + +/** + * Send an image to OpenRouter using OpenAI SDK + */ +async function analyzeImageWithOpenRouter(base64Image, question = "What's in this image?") { + try { + console.log('Initializing OpenAI client with OpenRouter...'); + + // Initialize the OpenAI client with OpenRouter base URL + const openai = new OpenAI({ + apiKey: process.env.OPENROUTER_API_KEY, + baseURL: 'https://openrouter.ai/api/v1', + defaultHeaders: { + 'HTTP-Referer': 'https://github.com/stabgan/openrouter-mcp-multimodal', + 'X-Title': 'OpenRouter MCP Test' + } + }); + + console.log('Sending image for analysis to Qwen free model...'); + // Create the message with text and image + const completion = await openai.chat.completions.create({ + model: 'qwen/qwen2.5-vl-32b-instruct:free', // Using Qwen free model with vision capabilities + messages: [ + { + role: 'user', + content: [ + { + type: 'text', + text: question + }, + { + type: 'image_url', + image_url: { + url: base64Image + } + } + ] + } + ] + }); + + // Debug the completion response structure + console.log('\n----- Debug: API Response -----'); + console.log(JSON.stringify(completion, null, 2)); + console.log('----- End Debug -----\n'); + + // Check if completion has expected structure before accessing properties + if (completion && completion.choices && completion.choices.length > 0 && completion.choices[0].message) { + console.log('\n----- Analysis Results -----\n'); + console.log(completion.choices[0].message.content); + console.log('\n----------------------------\n'); + + // Print additional information about the model used and token usage + console.log('Model used:', completion.model); + if (completion.usage) { + console.log('Token usage:'); + console.log('- Prompt tokens:', completion.usage.prompt_tokens); + console.log('- Completion tokens:', completion.usage.completion_tokens); + console.log('- Total tokens:', completion.usage.total_tokens); + } + } else { + console.log('Unexpected response structure from OpenRouter API.'); + } + + return completion; + } catch (error) { + console.error('Error analyzing image with OpenRouter:'); + if (error.response) { + console.error('API error status:', error.status); + console.error('API error details:', JSON.stringify(error.response, null, 2)); + } else if (error.cause) { + console.error('Error cause:', error.cause); + } else { + console.error(error); + } + throw error; + } +} + +/** + * Main function + */ +async function main() { + try { + if (!process.env.OPENROUTER_API_KEY) { + throw new Error('OPENROUTER_API_KEY not found in environment variables. Create a .env file with your API key.'); + } + + console.log(`Converting image at ${TEST_IMAGE_PATH} to base64...`); + const base64Image = await imageToBase64(TEST_IMAGE_PATH); + console.log('Image converted successfully!'); + + // Log the first 100 chars of the base64 string to verify format + console.log('Base64 string preview:', base64Image.substring(0, 100) + '...'); + + // Analyze the image + await analyzeImageWithOpenRouter(base64Image, "Please describe this image in detail. What do you see?"); + + } catch (error) { + console.error('Error in main function:', error); + process.exit(1); + } +} + +// Run the script +main(); \ No newline at end of file diff --git a/test.html b/test.html new file mode 100644 index 0000000..85fbdd2 --- /dev/null +++ b/test.html @@ -0,0 +1 @@ + diff --git a/test.png b/test.png new file mode 100644 index 0000000000000000000000000000000000000000..8782ab37cf53448f7ce2f6650c02410cc056005f GIT binary patch literal 38813 zcmce-g;!ibvo8w4U4y$j1P|^oK=1?&uE7azgS$JygC{ry2<|on2r{@^aCew}Ip^JT z@An71_tu)(GkewU-Cb4P)m6W$j@D39#6l-Shl7K|0x8L9!NI-ZdHwH!iu`)jcv{YW z{el0gr6>beGeL3idV^>q{XrTIu09dt*$nCR9?eBb|0^6EcK?5U;fI|oEaBiXc|mg0 zI^M=7on9Tr^1mct<7;Prk03P>P>?%~6ipDJ=D{=vjeIG4MIp_nso0o>+J%~R_IbCr zcn7G;nOt;AwP+;)8VKP=iM3_!3{E z%}>|uA<~_se!$iC%NO)iWURcryo$<7X&W1xtaMrI_pc;T!tXq^krZwt|9#m6M0Vg+ z|BLWn)boT;v7piap{}_mq44}~%4<99OE{+gY3DsGP1W=Nw0UiKCOm?W^?%+-iQ)s7 z`rm!MUOKjEa7_PqU$l{46#pN0CKXREG!Yj4$_XI!KYZu@58tx`(F9lj!GmHj*?Tw3 z|Kx*Z#$`KRMQ8+q{+5e<*>3KWmB7rH5JZ`}Un@!5BA{VR!&QK# zeSQbV)fP{S$T6(w&MZYgq?}qW12p-688X8tB(?`0GTjTtqLA)3=i>3ui@o~PKsN!L zL}eTFPYLpWriWc7w<377dk876FB+#8^Tb8Zh6|khNv^hzdA0tNBjmXjA`GHgo9Rzp zcfGSvixMi~AW~bVQb~>;N#}d*N22L~ztX~2<9ttl&i`{dm-V#;NXB(WdbF1o!^qu) zknE{DsO~tp>DSEEDfFOrzW>pQGu`=krbwK~zYcf1f8%^!y(9<&q7(^ylg}&(*$b3J zs+)7STyP&qM5={8{HNkRgdL|O0Xd;_=t>z9QLlQoOMNmg!?8o0if(@Jurv6NE&%5L z7T*|(jrBD2TC_rJjwm8K zM$dFu8EV^$=SjpFI zi{VQP3kwMg;{&b?qIY&ksy@P*;W_Pg)6bb zp$}cWDY2bWkgY@wsyF)W?kAw3EKS%b(B>}n+l?!-;RkBaT&xye+zg)SS+P=C@8#Y< zCI3od1oqT%l^Z+L2TiuZqknde`m1qkoC0IAd0*r-R}#5;FL(cGXx6;MHzJihzhRnd zL8>OO7iG<#Z%>cpC9@@wt2;n!mij>~EegRgT=f>Q6=ZePp>pE6BB=B2!SlxcQcN+5g1< zBP)qxAziI=nZAe3k@{QKYejONp~bh5_r`B@FA`-#J|RyJ;Xj-jKT6J|X-!2>ecW-- zm7mCHXe$LYPSXZy}#7?{1H$mF9&z4DQ6?A zYCmVuofykEa|_gPVK?fj*L_<1ETa@S{Fbhenn z<9|n3D?Of0pLme4M0-Y%LFt=mNoy*@cvz06g?Sc=$HEkP0r$u}L!|hkbmf~-5oaO~ zBLXo{Py`i=ta8E7rkfUhT{l{C46b~$c9R-?Iy>cvKn3(8MS`!EozFU&cX9JKSDC9+q_2i)lNadW{1Dh;(rW>n)L45k|?v@EPs>0dq zSi$~?rtdsj<#UOD#mLoGk4Ul-A2QmJz$avc?KeheI$;BgdXJ*@zER&ILp=emR zlU3-oU*9@7uXMKZil3PFQwi&M9Y%3*N~W<5iWn4}}({*=KLD*i(c)0gP4ag(=q-6&L2X9wAF$#~~_ zB53S@>54fdO6RQREXh-Oz5Gvoqb|aIH<9Or8?t$!yCa=XG6L~T+7Xyj9H+TX4X7HO4w-Wh1Myl{iPxT~q`kkB}-YUiR z@)O|%&B`=9`FBlf4Vrv5fpCQA@(ds(O~P_rVfy;k7@9ppwuh5GC;e^J=^gLQD1^Eh{vFzpset-Q~=K{HO zd%xK2qp~hW>N!iZ&L-+++L@AxEVVqg(j?n>;h3u9iNI*?Bb9^Jo~#D%-<|Zyx?>8Y zTf%BLsDH5y>}{(xSqOO_(sFJFkYdTlh)|yE0`()^)VZ`gmn_J5FuJ#>t(ZS=X)^8M z74R=e?97vhhNkO;0qql7tl=doG%@Q2KqkK>DO5IK&^1o^cS^E;hM8#nONn>`Rboz5 z;J|c|>g?MYg1^Qb1=C;u&;|ti?8s&$drvcskb5YT`XJqyRBizu9q6>sca@PeC4sv; zd=tlMpjby2j`zj9#DAUb$?$SeFiC{oiOj(*L+u((i(1PoB_U0IOq$Zbc)bu{Cmt8o z=9|DCtxe?w}*AIPBLDy2i;|8moZCMg2%L?P*f z(L-v{8wbu+`o7yRCFwrQ1sZ&}6Mez~(X6Sy0YeFz?Z#>micyY$d}p+QVlhnPk=V3Y zZ~Ou&iQ*A1;@&^JSUNboFlR`_bE6ZepoteoeQh{k_Bpu`uel;PPoA0ULMhXu{$)G} zR*ukV|D2D;jy_+&Zzd(ndOObh9@6R}-SYmI12jk3w$fcv{4}9N8Ga zp5V7V!_4;*T^%LG-Ae7^kQE^b0%uQNkBBFSS#fsZn3p(h(AiHGtJ~z6<-6L)=dM|p zGKh*?S{%hpXVcnyf2u`{JzM_Nj0adU<7Qyx4PtIs=GvKOYdB><7IK!sJ*=vGe=GG& z1lBC6ek?eR@EwdbHwy(8M%r`#erB}8@AGBAflgrVT=UvkvJi_VOgYD&+l6%41h6{2 z%I5f=oaZDu7;>qV(b5N$cF7os{Efo6jn0B^pA8dh~yz?k;_A~tPpD2Caz0OM5nKgrz1O#MMrt*ze;wbrkS`e)% z75+t1ODU!L9B8q6=0?rN+CroM#;sCbLUAGYbn`)toauF5vh>s-ShE*}Fz`($?TUvp zH0mIOQ_EE8{{#~fsIjwI2|XwwSwXDH^#!G%aG1xbRqBo2&2hEb?T)0p%Hx+x!@tx? zB;GK7@Zq*H6X#%djox=Xakm~~k^9^n$}0SuB-mUNM+Rl3J$bCN&A-)?@q zSQf&+Rj&I^Ta$xuTE7H$M9B3a=Q`WTwX?>utK-lm#;^$~*qh=b-&1mA)rxkn4gQa_#2?R*f`+3Fv05dw(Gm;;zuZ6G$W27 zjeU2;Auutt63Tf)eAyGMdYO;(*nNU9qf-oDF&-EDS)n0-beEB9X5+B>Q>Ia0+9N&J zS?Ox2)jAhIEW%BQp6!_=)fEj{Z|EG&sZ!sA{DhK)o5QCohsg9U$sZ5-zB$1B2RL8d zQ-g+S2)9V;O^0d{2P;ieP{}_{^9&Ulah2bJQfNRaIuCQ0((MAW=nMx}qoLrULM>_k z%RTL?0c~lNK~myFsjVjggX#K?uMxeMR^|Lwl&@P+XeVV9olutL{K$4|k`I2R&M^ma zaEJ0|OB6em8`S*>*Q+yxz-GS5C08V5>;{a-w$S!tLBri#=)ybAd9g z_g*T#=`cRby7MwxyX<1El~H}dzy-?b+8F&wA#cgpAVQ7W2c@XXyrqouC}<=8*(c8r zRszeSD*Fos6>D%T=wn1Oi{hMSqCyBpY9}F{gt?^jlem;@Gd~`{6wARfVdv9%zB9ezpOI#>uYKq##Ml!Ve$#bGG$HTZd?Re z6JUeFi0Ej4)DjR@l|yqg(MgAx!8lSFhAZ!BqW@~I9;|XcB1~Vw)K~w`A6LEWgf=>rXxU;<)}wa>Yl zQz)8XTkSlgB2>Xwz2+^`<}USqf*e3*`l44af$9P z8PaAHM`$5Jp{iLIe(+B`LE4*9KUjuHa?{VbU%%ZM1*=B=MLKtiwCbDR%6m@DM~f4| z^%fGcw%-MbshEDdHZ+VpJKlA({pB_t$w(P;O~9(CCz#&r5mCt@?OSvYee5QU17Z*S zLG1>HDfvx`t#HN?QP+2X!^^e9!DdNi8hDuwu?&)?f_XizQV*vRC)wf4}XRk*;^@7kpX*0RSS^|AI?k&>mT8S8N2RRC(hMR zek2E*PE;pZmyI(4BfBspLBXGtMlTn&39jIbGA_dUp)Od}D zv=6HUdMF+nBeY`hVd_m1(}{Y>0HY)J&`|4q5KqC%_8i>CtOPJ~Zh?&TYX>&d9VwgnAlN&At7YOl8qUT1k1v2DIZ!<@ zwu>M4H!8*SB`2M9-+=-7;ua4;ZJ=$6dWG*$$V0P+-IAlAJL2IrI&4Y<{DmC-l3SVV zu#YxS`L+@i8p^2n<#k#s(KpAs#;T%@8HyNMou?(lq0jYff$D^=m-U`mjqpMbb4gTzA#*8%yfcYAT-=$O_3qGWydK^66AzenDH zcLd?NH?z74kxAO8T+t34`URO5y^>BJN5Y9k3@WDV^U`!jyUix%y;&vIYmVgr6~wN3TeN6gRx7Rjo?r){!G|+wN;! zqjci!O|%tb6n2{3Y<4aCGHr^B~MPDytzo@!m{4o{6iQsr@i*kx({sLMWA0)B~sn#!> zDL}bQ-kg9%j$CG;W|rGj=))KslTpUst!jo0AHJ6YHzhHj+Ci;U*ItV<&NshDa}c49 zR&{Q#=B=u_Fa}8d;f7#ZuXikjLBDIMe+G0lGP9W3bCAm@FH^>#yt@y-!PAA(o0MjF zfRc81J3VVbeq#F;rY9 zJ5O zPS4JuR63@Rj*D(T5Fu76hHfvXqgNdVg?*IN2eTBc_ix%6SQ(ZV_BraaeS2_ssnsjP zb65?0A0ZO6VkqO#Q%CWT*5faE@&z&#oxSgK<&0@(p}|2oLm*gc?C{ysZWLA~i~fFK zNceDd`utIP=z$-Od?DOw<4`pehnOZ69mRG}Q?1kicL*-Bm-Wh`WwWC|yN%s3)3N7P za7nx#>Go*36WCBP6{#J!Xjdj@{OoL@PyME9jI})NJ$@j|k*;~b=d#5|F=w;)ure%O z^|9XWI_;RS1T=&8NvhVuaNQB#RdPS)bU=j^wa6dDIEq-;;FwlNkg?l&tzT(^{DKIj zjKwONrS+heKplIb#?Mm!t*_9Ga#kuaQcQtbYCLV#)q~8S1hah6oO1R7%JcCTT4H5@ z`RqXUpM0?pvBTL*Q;3z_(z9^FNg(^JD_4+B-mK_yP#d39kEMt!E5ePUh?bD*e!7q0 z2_Q31>$nAZoMU?F209Tx{sDeT?-<(#*{^@u29Nj&yx>`OaKNlAOPyVHZ zTa*z3pP7IM``XJB(QR-POaZ zvA)sVkaxmY?o}NM4n)|?(H$Q#y!CX8Ofw5Bn494bNNSMUdEJ_616~$CYcBO8qb|R35x)eNx~NkwB4QL53iHnwjLz zn3Rvnmi|wt!s`Gbg?p)OJk?FvxRe6((+>Nn^6y2GJ0G|QU*V!}ftDg`=zte_TrrFC zL&U%C3W98|<*4V;?k}){`iCCiy@s5_{=$_ErS7(kDR6fQ+Hl^2xEYP19@GUAU~cgy zLR#?kh%*ZtVCvKiYIrW>85rT;r*NK#{NBz|CY-d;`FwA=fbb42=ssDsH4pBxEeDNu51Q|F8LQF7AdXpSh94tVlO?IO4qQ$Zj6@G}w<`;QY zbbqck$P3&V65ct%x!vefoRzqo(5wqL__J1Adt5jS(|eSzX5$C>i5Ga%dT$0ft^^P+ z3dQ$XF$wFlpjcfx9(ZtGO-o*odE7G}@Wk_5G0WLlh(Hv~DaGBexgXMY84GgFzE9R0 zzvmkiVUP?AI=4b?NKMZ}s4bdcQ19U7F5P|u2iprIwm80|I3Rz4K1p8am3L$c!fh|t zetT{ZgWyNrcYL}6zj@g1dIVNDB?-oLUS}R~3igcB z*PQ!qKRDDElV-dlru?1ohpLuuCIqiucawDgyFeZokdXi^HZWoN{t}PQ9LPq~{M|rh zccsOV$R3Ug8NJqE9Y{w{m%-0`PVylOs*+_}#PiIo`m0~3W@cw-)8O9lJZd*lRqRu~ z1;Z&z1=5715V_C=@BdNPElAOlJNBpV9<=ZLE%SS!6(9rl2w&ZyK>C3rRgvHm)rO7* z-|2W4)_@wMWg%3D9G~}#MYxHNW}SkQq^%Vneg`Qaze}OENS@}s91WUx$a%oB#IMj^ z`nD78jEJix5!xGbQ&HGIF@=7gtZTR5kkG_QN&WFk?wn|B;=mLeeE{vq{Jk@VK0q6G zpYjQHXkiiaK`_&QJ4&}>5LR$W_b-ByxnN<@Oj!iKKrBfJsfN#~VwZU#gpe(ciPe$~%>_2Jj4 zp@VMIMAJmf-9V7l0$9HNDHrt`ZaM@PuM~JX6RS8S1DWbs63eS7xR~vN@`q^UmNLBTzns9NA2FDK1OQzd8EL zwSEW5g>UwOf^B2J@W7~>-alMCcOk*JLjtB5)d!fljxd%%#*9Ff_O#{dKq{|%azJN+ zN5hI#LxTib5l0GfNR{pq&4rTe60hCpdYJd~)FY&?FZj7{VSb zqa=n-{}wNVA2Fk-7*Ex-ZeVvBH%!{aRNaa=IPN3eMjqzG?~WRdf<JrA&XOUM>jYJN5$h$np&d)ue(>7GF5I} zHcw>br4m0fx)XQxqzd(EX35zW2b+w_J>~&gN@J`1S*#L3(UVdV3o+DrY5>VkSYI#U zuHmHl7og2Fy~&ID^dqhYV^Q`fsyytE%=x%)rA5drrJa)hRv2tDFg+(f+JYB$c0=Qn z*{bxiek2?1$qcAwdVt!hVw>4sGIY-Xm|5l}!8(-lW&Muc)kx{d^414Yl)dP4-S!iQ z<@5Rk38;&efOaVtz%azH+819=yc^gL_!0UFhcA4MmB~qah5hwSY;$luxqPg$zXZzU zrX`GVZPbgs<_du13zHK`vyxqvj;qhp|C;5yu_>U}-U>p$0JuXv? zSd&AzrIQPE=7&nCjnb^>TYzw1^K(lh6x`_s;j}-$;)M+v!dMz2p?@nGI1fd*7VHeR zAo{e>*K7?gu|uJa57%o-PMkG8nEs#v+mo%5DmRamxI-tW*ZhG&cwc6XK=<&wK^MA+ z*qAI0_7$$MI|KHMxjvN94wREFk|AvO%@AG3$yAA&YM_u~E!aM%K^^{H zx%R`^diRoNiyuxWmQq^~7G??8<8CZ3;$e&w#hw`-Y+cBKg6Pzbj!FE6c-F}%dHT?a zDt-{fpD;E55#!K6w~SxU`U1vmF+C%gD0bZ(H~2k3eW;||Ss`HghYs=~6mtxy?oP#l zy#~CYok3>6&(%f#bbxOgZ0Wca6kUvoHyT7JmoFZ6DQDhjP_UI{hljxT#CdPsnB9W#=fZd2**O;6tAv_5GZTn~1I zG&6qFH^d=ITcS%2@^MQM2Wpa0|H^h{)258(T%QYmD{+IT@-OruOmMbTyoBw?UCc~p zO&CLG!g%xw2{QG12o{*WzHL*@uJjpP#!-vh;)#qH#DzZ_5pW$L6S2Go`bK^+rTC1< zuC3WRUv>CQuW+1c2#@JaK3LX+Y6CM=m!*_MXkG|RTyFm4Z{IbhJP&n(Y3 zR>a}4yB@k@`Nd8Gmp&pdq@F%emSV1a7a60rwu=9f(A|9v{c^PJFuZO^qq;k z)=W_AZ2aokL*-mOG%Mg(KHFX2hUx4~@`IxT^lv^i&JUcim0JGc34ANfmW!6`$Og7| zJdvK}mp*5LEH!(J4ugqz+>j$ki{M=3=u4-yA1#px87u_}n+-&2RZ~4wP{Yw74MpCQ zyt%>2@k-&1^bH-0y&YPt^!VhTI4M070)aSJ?OZn+CPxv5hnZm6k&U8H@(ZRo$e$SvReh=nZ0simh?c|OpC;tu(fhxaGNXJxIEy=R)GeJxh$^@5QLX#dd z9LZbwV&?vFVT#d#PP2%3#iBB_D2sonQl*&J9x~Mdlv!8Y6+Vfwj(W)Sf(Ein%@{-; z=VmIcQWSN6=&Z`QloAE)4y;kcw={&Vv+Fq1w7hS}e)H5n-)LgO=Lf_2vkK zq9BAu7LcW9uSyL8opGY>H*eHtr`ogYHE)4iV?K{}v4k*zk{Hy41G@1K2aL#^ zcMEcmbmc`CkRQ;@o!}*RGzoeYS#Jk%!LW(*Z>q!Dpky$-Q&3QMU;Iv1%+nL zAa^G1W`c(d-9ykDtK?lJ2%?~{&0)IUXtZN$(OueU*Ybj z-Aci~?sLjG_y{zGhQe|zyfT$ta9r6-8;??~Ba`)ytMqMMZ2s=sIu&5M*L z6>DHO)|UCk1mfu&%BfAQaau+IeNT4gV+HYzCiUS*oWqaY=(`?z^~coz4((A)snZC9 zzLg%mJ1)|lYVsCOTkw<8FQI6ncIX3kdnlF=gj`Ys7jCB&;0md*gab#0>%3OmH9~!# zreiH~tAQ_eM6kM3aQ$i%x7qPXqo)1gi}uE+zEE{F8QN3)t}hSC2l#wT7OLG-AqGb~7&LxUtm_0$ILskXl(LhgQ?!TQI(s9(&T8}My+f`kO& z`L-=b)6J(q{K^8FZ|bs(1(vULn34221i=Li zb0K;86KhiJYTWws@uE!uR;nOc=%6~A)j0SP@7lAuzqJ=b29;7(93&4yV4w=$4f>Gu z>aoG!N$l9>`rejbEChIMhVe}dad&-13p`)%?gyT)BkzwhxrT}Xf5hc@s_<_S*3U0c za+f~R{f*3ZfCzRKv%cL8eiqNYD~)x9RJWKzzfPJ$yMbUTW(^7ybNSlMvPubIeizmaKIMpA^3lnmG zR=mLe&#C+7E!j^SmF4+E0e5SWAK7(_fBkxU1g&mtBgSiQcqfW@LDVUu99!Rh(n!cf#@t*)*_HcHe1(|-G3J;R3+l8#FLJpq%<-rs^Z zIAiD-6yQZCf&$MDl$g#iK03g?F&4x@)7e)r?ImCl^AxXh<4RkwWD!jm`6Cy6!oDQ3 zeA*>zN@ir^TpKu5L<#cGNPhI$Q^%O;s7CtjphJAKNjPq7fT$&uHj03K~E_1 z#B))8SGb!!_zHm*<%M1LEl9mv0qAZ9cuRmyTITH(yme{#U-@cpy}#d}RV|vSiwQTO z{m=?+)$*2=9LuPk;lD+{zdx|q zZcWUOL7VYZXz+Y1xB_NxGxo>d6@dKLRBoHinSMj~y-kELB2nh#9%Q>>A&DvaEL>4W zn}|uUZoPtmH-Z9g2bw?x)4Y@U4K{P0I5QiTTXRq$B|yD9%@J2VkSG_0cv`T8 zI|ca;!A_`=*)eIiLQ!AHXXV?4By8M9;;Vj)09=*PZ(h|U223K!7;{YW7KBgSxjAK; zG_02YRFjWdE$PFtNR1bRZr2n;ESNtGR@wx<(R8G|UGj5I!?UREypz_^jzmjkvRF9Z zv~?m)VAU>@Qbaobb+=YQGc?|LEAvW@ekJdWXp#uJ5k|z3CVo^QDz0s3-xW%@Hv_GY z4k=r-qovjjx39%B12?!!(3)|Q{N4AWb@a9lvBdCONn%GULw}m|L^KKMwboo@DHr|H z4;kE?4M|B<*DbjHPueAinm&8>7u0qk>%uk@^}3zJnLgx)JzVV-8?ot!3Lq=kllYto z9(sCsSX^w)UtG^jO0kApNL-s83)`VvivtcK1hU57wX4(Q9*TkVcj?w-+>o%Gz|sU% z1P_g53<}Hls5!CUQ5EE;{3xP#WKANex-m2=5O5xrc{O+hu%_sl5D4z1n%ub1Ka*=2 zmwr_o1Ak>oQ#=f9I~SDh>UiNv^yYxTCqqzGOufXdUS8OMtcF)?%n;8Aw5tQhu+7ieiCr8c0vu=2t zOB-{(QtaU)4t9k{MU6*ROmf5KQ~jkx-*QS@?4Cq$z2~ z9G6osbh`#fRekQnzuNEE%2-ofnq2G}mB`hsX~J4v{OHoS$0UsCoC-S&y2gD3;}U8_ zYO4bwGpth@CXp|Mk?ZE${2vNJaqh*EkU$YX^9ii}K6T;_69vmk}T3-(54^ z7C%wjOI55?mx<~ZK}`!4c0R(y+zj_~{y`}WOc3&gyYAbL8`Ud#nWraKMh z{FxC;3G=(YNM|_|HDYA}T3O%VkwOhV$~fxC#Ir5>eUzy_l&!wB^U$QG``9P>9sBxC z&zk6)Q`NZ5#PPur$Qg2TFaWs>3V4djdHWtgItS9^XF4+<-;E$TcZ?2aTivu7o{-7+ zK+Ayc-GSy^B&bk=5tS0`!DY4*bw?BP3@c8zuN_<&G*MmF9#cr_7<1nPt!jMA*|@0G z-BO_p>!v5}$o&e-bUj?$?`x_V{AM2*4n=W}M6>>YjPXM+G{O=QuU$&ZcjZ&>>t+B9=$5SVroD zYWc)#N#hzL7@y(K7vARrG*cPWx5FMHtWj~8Ru6qmL2N(E+RkPQi!1A`PFh(1%q$sR)Hr=g}C)y8b`EZz9evwzRO>&4Ne%0nQwATMA zGV05r%LCXrA=AW{bcuul{OlUFO)~%4OB~;8FKD*2+y*B@>$GV`iIqjjPwO@8lEoG! zEa*Oe!;$-h&eeTwUS<6I4X(oYPd5mQ*q6^^6}fyxV>HwvcqdZPBl#lAUehSlR65GE z@TRxIWTo_zC}fJI*UfKP;L0rC#&{VeY}o_IE6IzRmfbI5G%Uqe%B0>OL`j7HsQDjU zYjNlDTI+L`MWU=ATs;@}>?fjWw_u6EuuQ$_H{N88O8#c1pNHOq7ii01)VW>kPe^Z$ ztd@RRI1j7+5)6769s+Mp?I(P2ZDI7kZ561fy=iXldNJz|yR+DcTY^4xr>F928G9;o z$mW<)7GWhjIXZH7JyxG>hcX9J1T^LkjY&Quc4F+8bYK#FZ}T0HjVS6EdX$9Y|Kl$- zWOD!6^xoF!<_PFJ1K(hXj-bF2rL0SuodXta{gUWrqJ;_p-6GIuC2DgjxDH@q-v1mA zk-`%>!ao*n$oiJOzwKwb85KfSlJ3}>%21&Vpkx%5b1)QNc`2&LgzEj888tzjp7;R| zN%`afaGP#u9CLLKWxEr}&4Bk%`0Ql|QPf6n+H}br@ z`$^oh;5QDo_+x0)Dy=Rr%Xf!d>H3D&Nki0}=(GYW6-j(n5qo5T+|Ig7gICbCjg&-x zf&`)Sh3cR9wKfkHJ>S9dp*lIj3_o&u=!C*FKbtt^oC^=0pD!CIM9!T7@i5r#vZebD zCf%VtNX0wUJHDival4FGnXtwWOm3wr5H5gzG{Qd58oojIY-~fkOnVH{drao-A06!q z13!NVQ2MM*J=-{-?bLj=Gb0gfktm8*=24Ad{7e+oE2Fa>bwM0RJX3Se9?@|(!ryr{ z$Xx%Z4urqKR1@3fIPMxYUVIEU>d+#_wEYD=*ig^z^JJttq5H7~Aa0Fb4n5Qg27Z!( zEsE`L9~5vdO9s$9(>VWpSzk+~65Iw}lVd7|8wlp89K(W19!E4m44iw;F;oGKZ2+?d z_45V_7RE>)LMhf>m%&omX*=;Bxn9bHP(>=}aCEMft#(Hr|%svESYT*A9Ra(b>MO9@hqbzEY-Su~g93`du zz~B4FyTFj;vkr{zha2a=^YbXx0z-+^iM7D+{P|VE%bVKqe5`7$xW7|NJs%?8+%7x8 zy`BY{Xp>W>jju_mERbk^coV!5gEG_qMtRTUKs>xtZK>zkV!v;GLISEoF1 zZ2L8oufLiQwODC&{Vy2hsJ1&{-q;W8ZA%kd(eAp5>``42+$#W^70W95i;u@U6sGP! zR+$zMZg8lwMC{t%R!i=sI7doS`6`CC_V#+;n=c$DU1Dl&|s-7*CN%^xa zAJ&Nxg2`Ubf@fZ;`zOkK*nD@$M1ml*;yqEBpWnnnt^UuEhwfz*`rWd)+3491|A6Vh zK6e%M*9kflZ=Yh8eqh;}2R6{dB;FXu1XId{M@CgyTR15e^X6Qdo13-vMMxmgnH zP}a5MRFf+1xhqGe$gfMQCIm_ zeeA7j?CDQjJv8^yVw+R3--Ko0N1o>@P;XrE;srcxYkn#^mg0Ds+%b!Jtmk=eb+x~< zwxy2{oc-Qm{WfB5o-QI7#HMjONZ}ylBz8!ibK({WC3!!vK_59=*jOG0?lzK6so+OV z_A_-DPF*GF*Zo22Fcr+ocUCQ7%VW;e_oq#d%y`(1@^@De9&@kki)YBO^OZWt6Bai;Ho6ET2?# z{2VY;Nm9YG8RZiEVM{GMA}5$u&!@qe;{40N43_H*bMt`bUK3-rz<5bOl0!E$rhg=$ z06XST2HdL!nqoB9u7v;9&+tO>i&l9#JyV%?Mrcuo;@gqQ1u^>adI5bQLmLxZ#V zY_>KdsfVgt)?&z=JMg?#J%~?#?^F51t_l>3GUsKXS1SI}q4U&xJ z_g2aSW%eO=;9C0V+5rw5!o_UGlV|z?X6&o@tAgT0Ni>48leil%qgW^kj7gZ1f>6;Z z^1|d1ULnu)HF@s&-Y||Ft`6o5mRT;o+t|3H4((5P2*NP(H~q+>w>su2FeJr10jyRP z?-YOs()k3HA6|S7{EbriQMF96^$8s9)?A*%@8>?wZ^uZk1_2K9`nDnx~Xc ztFb|RhNnpIaVs6LQ}!z&#^UGSG3_M?|VPAGx87+(8n8~g35mq{ALDmUPE zalv(%(sk~m?&j-}|K67F7sum{tBI`lUzzs)!rr6l=CPh@@x5hz)xc%gLJvjv2o^L^Q(zn$f*`cP`);M^X1Ez^LS@}gr}1h zYPgLQ6|UZQ!xW(fu&*XFifWveF(Q z>D@1QzM0lS2{|PpH(th(GNo}>UH8A-ahrJ!C4c!nbS`Z@F)~PDqO!2O<6UJ!yFt1^x`?(SHc z-RFM3zjuX10_CbplLT=r0N> zfei6cbOLWQ)_BVy9K&mR#u(#!8xEJPaoev?4@r|tbD?PlUa0Tx6WGs!Vyng#Z}0B5 zH-oXkm$=l^-Rmgq_WS+%b~#eOY5!m6LM0yl(Jj`9%&^1P_hCRByHJ^KJFhqHjj4AN zz6CYW9RvoPZ6Ae}Y(K3!CQPIu{p$d;y3c8?~FlUciiGi+_0M zn=Kx)AGR5SUw@Me-iYVESo?Ks#g`6yyF4dWNJnp5j{}{yaIW?v1ZCi)1tO89% z%XTDV4bX0k<_c5h!d?!pq6}Z&U}9oY5zqcL@TqA*oY~>#8rQG=_PTL<1L&p*rp+B^ zI#0Bi9@a`HAJ@y%`PV60d2kwmuAqN&go4aV0?M>@jx<%b((F*y!5xT04+pLK5 zL$vU_^~iF%zT$n|-Emx&9oU-17mhZK<>fW4uRsXC^A|?%_yV2q?p%zAmI(7145viS zWxp-i^7v%8j9-nz{q9(I{)-kYu3?^t$DT~+=J!OAlH3OLt{J{|N}446Q%&(b!qf-O zkiN>mAxo7Y7ZYaWyqZ{B@n?F?uQy`KDj{OE$o*o>B-SS?hW5Sw&_iKI@13&HJqTrJq+Fls=Te zKUmCr-~O}q`Mga#*u4(K@%)a-!w%m3^p%ARoBa6Xo%HcfRv8*u<%k^@LV^4bIpal` z%Gdx{6->EvH!s3l;}%HdpXM&~wzU&giq;-EQd5|^U*K2LCz3B{i~hC+@C4gGs@4hJH2mm#DR34?pYgFn59vSYpB?&Kp{C0bOH+93k))4^^HQbCnDM{4OEHS* z&VHOty7kXF{$|ug>ni;^StTer~O!Fx0^*zEq_B>3D7@=?m zgM`dr_YL8(=5)d<{hx<)jItkVi#=Du9N@hCe0UuN{#Z(33gASgS75^zNA^g$H-;LW z(K zv$F*3KC?s;D$)02bouI$POzV@beiox1_m45iT(y16-%WIQR2Og&$y z+8s*Io@fk}Cn^T@0{xZ95VaEO zKM?P*uv7Q98FxZ#m(pdF!$xNsCj`~(unK)bu>|bxIlfPEAXK&<-KR?vm31R+_ z{;OPyS7Bw^yW9g&ai~3dE20$bja6NRi`#E$YMGILZ%gX+z<=(rD(ns88cA1b8XN?{ ziqpI%yKheyxG4DN?8A>t!G#XszYoxf&QMZ^j`!4e7d`jqf@m9US9+(uU0lh95UnLX z6#0dY5X|h6z_K8fm6+a;sV+ZG;JEsSg0AVcm*jA+za_Y;hV)pWKCEc}jMyWBT=T5y zQQT>Jdpwbd3Sn@?f>Y7!y5m=rsMYH02}RexG~wqt-#a`x>DADDMa>n4z0vb~RH}K! zTG`o+^Cf7TSS0V2#*h{_MIa$1W%s(ZJZ)T1$aHTprHx@$mZIfOw&n;f4+F7(^8!%EB(qv>lwZ!vP#@-=-Mdth!t(xo?kQ-(tMYLo z|L*ogJC{=@WurthX9W|+Tx%y+_oa^J9iX!ncEd~lx~D&RZI|oYpL#9kqCiE75U3w9 z(i1NHVyuwCg^EJv2*=WT_|bN;23|=JLeSdU>UcdwYdV_F9!vX!b?p=^q5v*3%B8 z8o?feY|)_2mGq~LW|Px@X?bk6pWpz34P_E?trnmKwMwsLJuW?s9Lu&`YqMl=DG%AF z5@&N+tZ7(_St&yQkgYNSm==2Fo+6o>tzc=q(-aX&%VE8oAG;32g_U#A9XUKd;#|W= zRrd};?W0~cwrzjGMueYbiR1A9`K7#a%$TwD2@e&{mMW|yXa9kJHDpRr%;Y|+1MrRk z3U3Ucigm?PiL07%@$i^V2;TQm#|b3j#fyC2^KEPxTRXXfl(X65(6f=kDbmr~zBSI_ zvessO$LrRkP6i3YE@->vkoqzqYC7iJP~}VhbIi8gVxPc;oG!n*Cj2uk=GIQOH7@+aJpg7rf8-RZ?Qkq}zlMgBinnd`Nw@C`{2eY$iX= zt+{G+&_WB6d!(-Fz2hGL4K$IMJ?SjVdduI*1|ra%ye5wN7J73}5sL3d5li1|trAV(#YoaTZr4v~pcf@5yCCqq`>O9c3L;U$Wp;y0o{lobkmgR^KxgKi;0? -$Gh(lhgn``91X@2l z29`X(;i|F?D|eR(ulIY6jFVTl!noMPVNXLd@WslO6p>*^oKtO^8p#WukK$~_LKwo= z5}z6|JsvLHjn^{f%IzG6VgEuHj6VQrBJ8^fMEUk+o<}@8N>Dv(HSpp>0nF4Fv%<`ci;_82uyuS3XBPh&EX zPy%9_VN^4znfLzaV8~88_Ff*v4{v;>f2JrOI%i7$KI9fDkzdQTa$F|5vf0^yVG(aT zIyxSI4=`z{>-T>HPr5zEUu$s=x`1N?tz{Ws849_D=b9nMKoG6WW%ltE-b745x} z%kv3oI;T1O%Oq-8M`R~hZ4&N8?bPcp9Bc@CkrnXT5UXJ5_jm|RX?ec3xSXtOeAwAA z=;4Wjar!x5QnK539 zDB2oKH&&_W%y>>Sx|E9y9#$?Ku3A4aPm!>JZ@sfq0dWehwatl9w5XvWDqB{XGgq{1 zIkBd+gCQjV@x*~vZwdRHq6P0)@&7xShEo`w#&WCsgOJcGJ6gnk@XO*c={3AvF!;$F zhG8Z3^JkKv4Vd|BJnc12cC@?*VpA?2R=3OeY)Ix!GJ534dzaKts0?PL%0TAYjt)_+ z`hajHW->dkksh_5(*xGSmfv#}UKrmz#-!2CJFNepWwRi(FrB^NE}oacn^X;H=ftLUjE@==vvQ(0A2o z*(G?0pR|l;1cv`CX^oiecW8>&k~O<-gn)|r-|zib4avL?^IOiERvf2gX}2H?XDIU3 z9d|lDJER+3v*l`6OA~(YbDw5Q|AQCQ6u%<<-2b6eBUn%xV!UirHh+XMy4b@jF?@0J zK_;6m+YR^4N{*eP4ihb;&xZy%8$gpuH{D%-9LgQ~?Rg%qQ#?~gPBsiciD1PSg_9g) zveJy-4PWJf4h{_Yh~}E)1`csB3~WW65mTjz7M-4o6swI8qiS<^QUjb7Q`x9FR;E}H zx3D^0<2*xI@*5r))7fcsP?qe{XPikcd!^_xl4#ho_V1bwlpWZ0j?l-zy+u}W#35Vs zs$Ivh&@K+u1yzSc&27%g4A@_wCQZl70F)#^@Ba5bL{kb2sfp_9l6Kx?U*uI+S5s0A zb?u-3Elx=r`xct)F@5;s>zf%Ah7lUV?Wwm#+xL9CbT6lxpzaZysxFqD_q~UR=!8u> zVT31a#b;kuA!0$(J#$*?#9JLGJllH*-i{C6nNw34dFCz%SVDP7_+WaMd&vlOBtb8P zjHa2gUN=i!fA|b@*n56%!N^=_34*_WK0PL!0;sfX@LPDOwK$0Sz6VCK#}m5rd>HTU0(Yu#iHY?djJUxi1_OQq%|8J6CVHF;au6-3J#4K|{O)$;Dh`=;7@y<%>Dyuk5n16J2VTDWTtWNku9U+Wa2&KEQ*~hoq2rCI zN&|);xxb9ueU@1&r)A7^^}(`MNP7yMjF~5ycwO?BNia;Qit`FQpzL3s$jRBqL?$62 zVe@OCZ0@CN+m7#P)gU4CoiaK)(LI4d5tW9cx?pyW%sJfsj|@s1 z5bf_N@Q~dTHVY`b!a5T`FcyVBRchCl{86x3Z^kJOV^3F$HqKMF!8nfYPTN2IWnjDd z5oW=+A^`j`ZxJ@X_flo&X5AR!{o~)^_w>CjLOk4^Z==^%OrnAwR zM)=X9C&A6ea~i_Zo@>^#v6%t?Q5hue{)8<)vp|(#>O8HdtFDCNZqkEV;C-pVTk^SI z@#_tJgbI1arA9soHeAiZ`kNB~1y-A?5?;|+&8i$UcJlHPF2nD!SsjTs%PBAt)&L@HpWQG%R5cP15N{7~#>4}vb!2Zt=9qgqx@;^Wv2<|k zuZLklW*HRouV>t;cuFWXzu{_{yphiTS>Xa1Gmc}FHZ|wtNFH|yczir`7!HeA)R~!= z>$3RlrVnogxT*u(&ss>o3)x++lC#@`K6Z1$c=4JIAOO+LM{~`%3d3T zE_7C!hkKhl0iyYDC{)!xI;kJb^2YycU0MYv@RI+2NcD3IIAC1Rp{3ItKD2d^CL6FM z<|a@Upz2{3qeJrM4)16Ly|6>$gztD$S@a_xZw^eifu?4h*kfi+qO84;ms2c!z z;Y=r2R+4Jbn`q4vvazjhT(1`GICdxly-Erfj{&0^o*Gz+G`-XQ(7^kN4Hi9hSo!H; zA<=EME$>}*GbBIRQoW)3=5Om|OnBO6)IFRlFp^CX>h&I;Xy8hBa=;KfEltQQit(PlIJ69( zLJOtpt?MKcx&J$1I^^$%)Dd;Cf>=E1{NS{Bm1tPt7EXVtd&QUfav5d$I*`5DU^}}Q zQdR}~3khI0B;v*^F53PM=R>;0-P|s<{gYu9r3hxx`N|ytL*YYTi8!jrt^c&Ng!jw? zM91bv)r*>1c++&^S^=>{P-d!iKtIjt+9rM~6V=7plKy^rTU(C`>m=1TaF_oy_){#R zqJqSy@knbM8>dnB0i(OqCEy)W%mx9i-_L{Zx%9-Ng84c^fLfti8Rr-6%n#GcRXn~D z<_pZP>TEn#&Xq-trSB?P=S;4I1Enbqkn@mNl!$)GosgXJmctuD`?%7PLlJ~IFe-1p z??C@4nQEBP*!wtrJHVK%7$W`+knQQpS@v_zOZR z1o@R6#Pte5kC5tSA=Sc*P$E}jq2WWw zr2GZf9AGlVGBf1-!c3{yVyjLGDPTF4>{xDv+mGqd1pO1*L)ATnX|JT+gImUuMZG7R zK0$Rc(L|!S7t7VV5BpeX&h#A&tCgJex}-XBA3(OI+F>B=_v0Hyokip|tH&vfr_pvd z$`Y<~N;IEuM{`5pfm$(S!}A6l@2?2pt8yyDeuVJvOmh0Zcq~JYGmt{rg^}(U8 z!RyVt(A2F6(u}EPrSFCcs)E$8`Y$M=(3oG!#w z|4h+h`AS1{b3NZhd8L|yMFm?Pq2&+5aqeAv{y9OWap(R0nz3M9i&$`mRLuM`+Ol;3 zW~DDtryJJyN^Y%^`|kLyJ517Zy98xAg3zg@J@RLM(!&t1cyH~^T~)cI;(DVlaidke zs-U0O#Zm7I+Wz9tlqxAl*O0}$(4zcrnP#^nWv$9dAnMz5P{B}Oxlg~TLF#4kPHb8Gfk$}5O;bt$Fo227iOem?h(}E4DS4B>8p}-AT-+ z9A(GHVyGY#5blT?AF>gIIqZ*|g7e(B$ZnbMQ6!nE&dCE*Mb$IN%z?dibtB)FPYOP2PCw~8MreTeOvn-K3Td;G9eVO)uG9;&Q zZ!<;Hy{_6#$@r zGs4mh8B(55-*L!Fj%-MAVZA}YDC8-TK0nf*=CBV)@^C@y3Cp246pM~5@5jSbNM8** zIEd~}s^{6%6gEWqQWQX&JJSODZBQZORa>?iMU!Gc=4g&Sj7f4LM`L?PpWn#e-8#>~ zFu?*Yqe7bfCP1#{wm~_@Os%@c?)brB>sqB))vaYIw!cXY#!3AFL;G0U{-x-=%wpPN z84w>|F0X2``z{<2ar?Aj3RtePJX}g0V6w%U_Nheg@0)XRe_5g>C2Xg|J*9iMq$u&| z5Gz8jkj{(ScGgL{58@*|Bjw>Et~8ZdO4$iV@Y)R`V!rF@a%GXS^_x3yla;c4Q(`w+ z3*V;AEQ^;n9o17{ar$|}(R1LHxG>-7^k6$WEC`H0!hbnH_}x@o2?lWVM*2!f)y;P$ z+**)oJyGK$dA1biKg~htc(^XDFTsZ`f0hLKy|(Lp4h_pG8o=qa_F@Qp0OeC)0Lc^m z@80v&H8=WHb2j_^LD-DeU>}Fa3=}6pF4NJzmIp@=(+y+loL+7u(xZ_fF3uhlSet;^ zDN`VA{4w^72(%gd^Dg~)8l4V^}=#}7AhRA@2e#@Tw%hFYs}3%PrBz_n9b{fq%bd9`k}9u8?J!b!**`!RNgkzA}_; z*jnv$?g8FL@2f_Eow}(^dTvmzSEQ%^Ta`i1@P5HHE=N3$lXUo&soTO)G z=a)qn_MSP0Up*gpc)?JV({M0YN&vDbtirGYuiDhS%i|XO^}>^(IyuIH=&Gi5P>?=< z7(cSXsvH(ZGx0{y?l<@1>PG81p5MzNhtGM{0-J?CkLG7Jt@-(Ih~QH5Ll3CThT2-Q zGZCuBK;zQIG$d|NP^B-0EBZz>mDu%ckI4B1R?xH>=Czj=Z@pdu7v|G} z3$vi?y)GJ|ckZ+k6~sM&p}pKI!cvA6;;#prb_KImRn1d(F6ip2lSaak=|QstcFn5+ zfb%ZK`y5+?>><9#Seh(uOF9>0PpHLm*o^79+M(bqp{?l2J1;56sj0t{UlF<`(Dx=x5I z>T8$>WCzUlosav;WwtHr>jp0XE;#m`M)-^figx3N;xV6ci5-jxObG#o zZ;C4H!p`KRxlEhLZy2(1pM}E7qjF!5c^QpMoqE%mYWtV*e=Xk}p!J|0SVXmI}^6bKy<`8!0Hm8>D zoqLDzJ5f=b#MZ)#er<8squ{8_sK=iYpM7@w-U?iKJeYRV+Mrn!pmsN zPr)w_z+OZzhr<3589_ao!aqNASKK(5*O(Sy%19e$Bui?tdu&fqd_Wf8pDIZw?8n73 zt+|S4&HGsz90;G|f%2vjvjpRBuO{{?{6($+M(^=i^b%#RVQ95b4I8GMm~sl@SpB)g z2)@5W(J6g_qXXP!5@dKxjJP&cVd>B&S@J2-iPL@B;m6nCED%jaE^8q#j)KBF>5&Mk zL(e_I-#?N_ZN@0sK*n}@AF z(i;H8K=K}u&Qe1R=m?xNc*yVG+!znbOh*Sl@21cC71ag<`*9tV+Gvx;jCJ*!%}z{fzC z2H}PHs~GPG2-pQ#jug-+ZrHcKM!>{aG%$fmTjEk4gvtXd>=_?ZW^1yCcn4>n7FmSTQDE{0O)(9qbZms@0P# zu-`%sh*okjyLP*cEql667GSxi(2}QqOGNw< zN_4iM7x$G_IH0)k=ajZq()54gK?=Wzt#8n)PZvCByAFT~q)@kpdu&1IHxH2qBcw}6 zCkig+S|&H%ZfIjM8Ah8!0g?2oKnIE+UeyzXH9sTFX!SAeE;E$)sneA0?lfw8vtNB! z3-UZN^>j(DOV%#Y=t}hSDfB<6VaT0DRFz)5?WXP_C>Zfkmt{&`w+3pJ{|6Q&${9lU zHVg0mcVb|wC-U$}$zv1A+l>QHp;_Hsm>m868n+?$AC8}5By|)}bDhH^yn*(>|AZPw zYpt#xn}H}bE=Q_NdM!B3tIqN|AIN^ldTjNCP9h*O7%u~pDJNQD!yk4MhVT!h3MC^O zMZ~FTkYVSLrW^w%J4Rz|O=9^K@7g-r?&~`|Zi11;qmQA!elr33AWejhLU0C4jI(TE zwPqnU@=q8kFe4ZZO_)@GsKHrnBOb0yHQ%j9b=z>90D$)!W3#fDCZ!%IY~<-&Db_P4{$1pdj`OwzwcRCpuk ziEg`mr(Dc1|es;5%joU44x1$ZG(Bh8ND#A8<}+wzB}M%dMTWk9 zxliPMk8UN(G82IPH-a9!3BV!GO3)V{Jhd)8zi?`z|sEDws&Z zhENuP~ro!^s396N)aZ$+sx44mAkNhTTQ-TKrkeb*kk@&lJi9#_F z2r27m>Qu-ClMAH@dMgoSOL<$pG%gi0BHG4>ifE)4aX6I9Qr`%=iDK>!zEts_R6mTQ z@N9L145F%<=A#Av3@4KWdbXF6VVLw_+Kuu=7p!ertZrs-x0Yp^J@Q9>B>UMj-~^RS z+k7N6=uu*Uq0U!nXR_!MnJTO4MgjEwc3$uX;5=Qyo)EfWvTwioT%p~;*UNY`1Zq+4 zN~Tx4Y^*kn-eMMaT$0Qk$kJx*QBP2N<1Zhc)S`39#U$^Y=&V+a*K@SjiJMe=yg8B2 z;q#H(^{#)vtE($Kk&0-R)fe8BqT@{{g$-#~cI8T$o@1_5#9yW;WoW~gWKOc~IJfmw z`4AVN58jeD4g1)6%*0iWw_W<)2y(PgY}Q0$YmItziO|P!NqPyJgl+{%K4#t(CzD)$ z;QtrWP-(0tFLR;8g(St~`q%{Vjc7n(#-afVqVVOl3e&nozCkqm!{!z3&PbXcC1z`o zneacNY*wM)eg|bv;LgSKB*Shn3N$R{9*QKD#U?}qq-ccsUlK$MKL6Ef_4(TAwoc3D zf6hpMk(Htt_Y;RB$$uNKfG&u8`6-VdtKbg|<+V;BsdfKCzsie2UzMr~cSQVk=H*L$ zAHi;+Tn4+yN!kW>;~X>>0_lG8Cy)%#osKnW%bkp%q2C_nD}oMDo`t)H`^f%FXC1+h z+e;_xW+xtCM++4rv5eI;K%>|+vtDOW{J>9QZv+a${)|Kgxix{$Q+ zMjCQN5EKxV)(o14N97wPv7-r&Swmf(iaK~N7)4I2DCTSWv&3l+*GpvUSF zcG#SD0H-4#wkHPc5b@=k#Wob@twmy{_Yo1s^nGY!RQ_M4 zXNnW*La<}F4yn4593O}BMj;!zDhldm|E~^2sBIV>c`d%`- zQ+*NBh%=(^owqVKuH0uSV%;W6OI>(R8pC8w1A2rRXw-@@ue3S@_S9Xh^|0LDKv@Lve0E~zD4*gmu0>!2<}aY(ea*Mz za@n=(t%Do)x$IY&4!ysVaX|hCO%?3Okc8aEcmeEjSbaT{?l#OvjnysJDWdRgzZjJ- z+28Ldp42rI5hA>J@X1~XJ0Lz_7vQuKY7K{Zm{mK^c;KIuq z4w@WWx)OP_nk-x;y8O$djzX*G?)7krnE!@?#ghSk&uH!;%sT!#Q3d@00}}?G~Z;Xs!CYXmnU1_P!mi= zz8$jvY|U&JjSH7EBmR++Q71q4Oc+0~Hp=sMx z;pGUWKQ^r8Aoli$)|-{s>nWD#!-ire5g-cPF7Q6J5voWwk8)5^XE1%f;`jMG=t3`< z^fdFw3NnWE!f3Bs9E`%%PCmb%0={_FX`set97AtcD0kAlEZ3SmeIaG|v^>#_x>j55 z`07!2BE0IaXtvy>`jM!bGzv)}UWPjHSj|F7S%`V^WP#jbM+lu3;q^tBF$wTkQdK#33j}f}sn3oj8s^y&MK467@Mgtp-xx#{7oAv%_h@x-awfkKEC2~5Io|@6@F(cFukUj?yrpWy} zj;>GEZL-sVh2QwwZSav#!a}pkVNnwdlj{*bAMId$xw}MIzFZ z?<~8hB!^T8p8ow+Btx%dSX+W@I$$4O7%PM}K<-c0%C~$eEc~n_@LKJkw>=MDl4_^*Ag({N z3AqVF>5wJA;t7IB3p}6Ua-Y;lkEN5kzw5K4Tn@3d+5X(UEOcU83Rz{&4F>K<#9(s`aC{l|7+s+@ z#8^gMtiG;$BS{Oplg(rJmPf)? zHn!jxUvoJ^g#w~sEAR$SASPO3n%Xm1-1MSTo1ipzkJFj zzwGFN%R4PaJ$7FvH&q1T{MXCTL=kR*{2b{iydMH@10(Bu5g$_%Fs+L~76>k;wv#-U;5-8xSZV;Hs-U+&D&aS-|9~IB}viHW7 zmggDMuUS?JoL;!T=^Juvqc*&9@zj-FjQFZNEw!lf8TVe)QolDBejE8(AU}j0pKE%7 zyJ~;qtAc(@8;9n4w(}z?`cRYnfK+4VbRl2OQxME=@j(AMuc`?-PRK|2{AC2<;oB{c zEbnJZX(#1|Jc#JL{!eTY%tw%>T@-VPW;~G39N2Ur6aHvL4Cm|GJ1GSD&~WC%I}GWC zn{vWJPUfa-Vip}~51)E@!l!d-Ued%zimNk#n*>wzY091+4THzZt^~5I`Ph5>i=z8Y zVoFbTKVs~{FpS{x6lsVGh{|q_BkJHsaWwv92nihbyQ$EECDtreI&|L+o<3J`H_T!T zHK1NJgJJ&;Bqg~cQ0*j#p`&ZL_yp@j5`1F$suKBnBDLzlt(_!f&;KkgcW@1R%eLL9 zyo6gEmpmWb`?1nrUpHVBgRtMMX34%4tA)i6HH4#RbwcHT#quML+9tZJ4t(CDbin8c zhRtr<@6h-RectHT=Sp4_{FC8Z{$OE=E*@U!w`^~@e9&RJXoYUg(WlnLI?yuj$S} zES*B*$?-TmZt(K6S-cVQt-tp+zdtq@R*ulcO4|)-OHeJBRueuQ`Tg0`jN}GYVI|}L zf=vTWlcVc77y^*Ygs5MvgJh6G-suK6B3hm#Qu48S54Jr0 zd06|f^bXXGb>I+Q-lhO{tiyLTz#_Do|=z;rN(2+ zq>NX}L7FwSTJLwxu64AOgFDY~u~3EKKMXKYg?1+*=|Y9XzaPSQg8}09IW+zl3~!SI zG3E8O5SWT){?yf0+NS2H`VF%pdj6>{5^w$BfM#iF3--q5N2AShMlSib@lJ;n(1fC) z6SDNw(a2BDuVWPlZ1skl0xrUVqM;-3hIj3kqiQYt_po41LobRHXH=b2?Sxo@ zrte=0Tn^nvk4|Vj`fz5Xd!5*p}!mO zIGbB~IJ)orrOhf3)wyoKQ)px1mhc41rrPgNy6Jm*`jTZBDbJ#ID@7>63Rr2Dy?3+;R-MeQ2wl>U(Tq_8rJhXgtmGIQkY~(7R;M#!5 zI=^7M;zP|dJn_N)jj)h}5*=|>EpGEewmQ6>SgSO06vnrKdnj+{>GUQ=CUROd}4 zilh#LJou<$6^}ke?7T6jxb^e7I@ypQ8@QW6@%7c}a7HpPw7vKK4;r;us0f=UkzLA> z%u7P-(9b?Rw+&|}A^pxG?QVghu+J~0O)jAlQpX>vs_4YP(?SsS<;c9D!70c)sEBl1 z?jVViX&KXe>6HUI6b6qm)5uRMMfyzQM6gr{vmqs^J)!X4>I%jln9X(*9l6A{w6>S} zX2%Sd*IbISrk|}<@Ab|c^dOMqxy?T6Z}$Gls}=Vu>zy$Vj#AKc_u_b6%up`7+sAZo zF-!0KaVwOHI5TS8!9f?1EF@~501>^)FX{w^%~lw#;Ir7AEqoPw5=^xfL~_DBj64@g z^>TDqyT6k)<`g9Jqms222sjS}XKL%geuoA(G}y^$?W*s!a~=}i%L$ihM~;n_hF4<8 zysyANRjir}(Z0hSYtUdShW!!ZDt9I+;&S5t?0m#hQ+w|>R9-S0zHT3^iaj}n<>Er( z;tJ201}|@j@|}s(W1l$2gi5L|=5@o;TPt6YYg;U<6ODA6)bw)nEEfq4;a)=*K~K?I zYdvu20EXp6kgr#sSE8lBQ&`$WchQgWYnP|5xatR~s?scWpjmRA!^f#kang_a+NF31 z3d=0^tZSm-9hA~!ucD`HuC!cVcnUi^yY2tPeN2}31#&e+Prxw%A9&;O5D40NEX@@u z)^l^gqkDiZT`TgNul(?@uTFfbJM!BPaQL8-3aIQ6#iqm4rCU`9wpQ0#^HFf49nk6M zLJcRH{A3Kw+Tu%V&L$^dXGG(5UYt-R@9E{ID8*B0hhogZxwM*2oU)a`05e&epF5ys zhXGvVai<|V^imlUxVOY_?=}0j?NF@X+!R#7cUCp?XeX6p` zYUyv^FyTTwI}L8#+zWw3VBZcwWzkPcd3x=%!heRNlV+{{&n`G0Dlg46!MH~oV|`zT z)m0rQ&sT@ppymFV$TTnVOPRzMk$fy2dLp7e**BkjBZfQZTJj>CCAv>y!P!ljykzS? zM@|0C&YP{pO7nej`ti(IORtAqiWk@V_RPH-#XJx4LOs19Y1tOIfW!baieIlsr1Vs+ zzteEh_;xL`e6sPHYWssSVsI|?k2>(2^YDD~@Hn={*bd3=4Epydnbwx`n!z=$^49;K zr)E=S1qz(O>qXL(pld^!-HJ$lY0%I{EBd$k)Wz0*wLi&9%LXm0G<%{(H_6h#79U`j z1fp9a%5lDWa9-`+D@#}!v9Eq}hn0qo1=I=CNPtfcXz>ky6hz#~w$ zqpkx!d}Cqub-J{!x0HPvmGtA6E`~4)O~H!~EAU!A<=7`8+}YW*rEPQ|-^j`3oaIGB z!le&=(-6LjF!^j5Ju#vHnQU1FS@G$QoeQ3bc74vN=tjG$h>sQ-XC8GkVRaPi@?`U* z19x2Nd}(C6+F>J7*K<})%vQLT2*xC5h^ia*2-O%l(di5{RTbjLxi7LS72vdF`DKCs z5Tcgq2-kPJ`=<;C*@NC<45py5c#UIxPe5`-*i}%4*J}St#?}rL!(fIL%#LB!cg!zw z;k5_9RtnAaS#P(on7l19(Uw1OqsdD4enOTd4scd_ws-sG3etdL@62DXY0x4(f<*7{ zdTUN!f+zp2@TQx%U2f<^@O#&;`L9P!O|VER2;)3G%c$ zG1!GLjvRnzwB*kmWj!T5R!C0+GPhc&p;VDA9D`w8>T51G*e>TZ?uXzmE$1e%WbFJt z^#OMHglKWL9Hn!Wa>9e~gcl>+p%Xs0wuGH>%zWqXpr$~Z(?Gf}3ma-E)LM>ReW0Z0 z$M5B8mjpiO{yj3{yE3*#R8&Ja=)@04wj9P1v^`uLG{8bi*C8(YvL87|qbnH;z?Rqc z$i-VpGKL5cvmL*YZbp+rqB@``nxS1j#fWrp5zbpNl8!1@nl9dfKP1dkrjYF=YFhx? z58e($t~@L>4eznVruyl3;^+~M+COJeCfO_Kg{EjwSwvd?n=M;it&bX$t*d^ zv~4j)zs=%UMW=>@b)jl~ZvyQ~{`@zLN#nwH9O;qBBa5Js^?jbu0JS2GQc z=Iv@rVA|QYj!=Q2r}h}_uRnxFhTM#V{ycz+(;)u)BYbB3asqpb62APe!sQ;`)QYaK zW-qF5*WcQHWG8Y1$Rez1%NLyb=TK>z*c1U{XMA=uY?S%R|ChW0$7Z6I|87n^J)uA6 zW>TFMPlW7O8X0~0rQfvA_;*oKnGLz2HOBJ2+X*?dq%#!;+2d!;J8IgWSZ~EkYQL2+ zZp(Ixe>Ec=g)+>@3ja`kGcw#xr`1+uvJ~H! z(q5A_k;Ww;oGL7AG|Yv};Yf~Zgg~ZCc=JSxPL3(p9qLu!$F2IE7EcD{vO%jvxrUtB z^}?xsPdrD4dXJfnY+EXUa?#gUFL(a8HqpOwt>c_K@eG9n4L**W-ljtPK}s`?VTTX2 z_QyX05iXlYC-l}T;Ev=E!x@(&$LY>g|MfQf2p1QaK2RmvGtxftR=zXtW)m#SZ16PG zX^a&Y`{Ms8ZZR4*QiqU&J+mXGoSPmwIOp{=Y-MfRpFN_QD+18X_>XYR|o=AiA0Cx^jmE|=l zE9;XszeIPG#M^vOlr302m-r5o|xHz&_IEd-_r?Nz?Y<#`dvrugtrdOk3Xo z{x8~F>LtXHxY&gM7dGSn)FI_yS?PPS&d@G-AGU*fv;ANAvf_iWvtilpnKD)CBYpDC zauQfp=1D!r+qX1c#vddqI|DLL#$>~?VqRHB;)VFE+*D~e2quXuX~HR%WhH*>mLIAq zM*db#(bmYlLX21fiX!{bK?2jQ0a+*FU~XwewrI&Dmr zq3)PQ=Y@;(Sq}pM(vW2c42~p_9|&i){AD{}Bb+akjdc=-5V?*@I<3ruqwBToeha;` zob7yF=ORuRC2locA{glGpA9r4Ve6qhQU}D7dX;n`+Ll+Ak$9XzB3=|b|JVLtEU6#f zvu;Tf+rt0d21IF3UMIforJPJ>8P;ELUj&x?GhgZvjt4o&Nf|&M+&$@07UCC*1tb+~ zSEL<2#WF4Qf8LX~&|V1~oCwl4s3Xb%p$nz#9vCSv^Z8p1=>I+wC0?|R$NzZz(1y#TQl*eo&OpK%%qjK#*ee;^?j=T8X8%Y-5PkUzh(&@1eQojVboIyQE zc|wq~K=71k_vVApm&BKJB~VtkY!j;m~YGUZ?Ev4w3Q3UCG9j27W-eAFZm-3Jw;whzIm*^}={Yl!?MW|n;?BQmiGZBxv zB|d)>59C4ABlBgR)U(Vt!nv6ryAP=G>)Nb~*VLvRpXAM^S({X88vt;#Y)q3hB%i)a z|F+;?mQVj=sFbp=TxyLd7XBaG55rk|685@0V1>Noq8yJhj zc9uRs-H{gkN77^-)5(X|KLaW6|JD3j>MC-3o2ucl&M1mf-a}a-cqhG0`@e;%{_pCL z>9U->XMHIT0Y3k>*#9F1`c>7`xykZu(kd#?1H$&qpZZ|Z{k7tGt*>#$eYBM ze1!hb`ej?n>!$tR%P8qG2-qtBcQdCUZaDt)WrOHV9{(fBoV;h{QV0@F+yOQc_%s}L zWZZBgqd5c(Ae9Tza1vO*7E?%U2ngY%fNV@@1WIwO&ho?H!Sb7RF5^BFR;iR>(wT}V z{i9>CPRdL?(&A>*Lb^x9{$_w=b)D@j3H(jjS=QEL%h^94plR_mD&>jOI_!B3aa>5t zvmEQNQ?}&6|F(Q&?@5Dn861+PY+ETC@2g$CF8e!CHIRCWgHA{4KspG4cuB>6^ev<* z@nt#kChH;Jq5VQQZsG zZ9!VHE(rUR_bCq|7?U)~Gt2n$VOtaEGz7{@I_w@+!-R z{Lo&F3&heo#NkndkPqp5l24XXDoWoXW4_PZI{%mT4a)yx|4}^&k|t?|I$=6_+A9AS z=bW${s_0VQ%Qlg^sm7PZ^L|XcC~~g|3!Xzgb8i=avrh60_mMwovy#u)9mc5!@PFbF zSL%s)Qa{uK>9H*af^Z3mb?|5e>S!SPX_~S9BXwZ&sVh6fUCsZi{WkO+E`7UM)=m1q zkT>LwIANW}rbB#($F~WRx^yS<()L2=fQRl{`p3 z$$v;w;zJCINE_UDdSO|6jZi4~kFD_y9G2JGemZ~yv;A#1+p-fQux>te_;k|q0g>g& z1~J(*r+4Ap{L@;eGat+wC^)ma(m=1h z92Zcjl+)nF7~|y0IvKCB4f#84doO=BiswDgqJZm6mHRFeg29gXUQd4Zi+|LU1nOFr zrwkDC81ead0%c>TCT)?R7|e)Hked&s?2zV*EXKt|WYCKTKS^xJwD}nU5mq5~0!UuFB z{a*%4(*L<9Bx~2QPRp02SuWd?!KF?}pT8*=Y16J*ue?vRPTxq4-KJ^=FH#j@Y6EDr!XP2U{{9CT<}UIvMhKJjJS zhrS_sk^VrsMr=IiZzyNoSIk zM&dQlOov;gGhrTt5lF##&qgP%7Sl`oBX5$ftcx_6CmS39D*a|IY`!;e+pq*Hi`7r! z&VNzvEgn0wVwYmb9{`lgrF6!Dofz{N=n#B98;Ub5?C`u{Sw6F!67?6kr#wrGZRev` zxygz;Vjk;YAY)~*!G^yo7}%$uZ2dma^1Rvhr;a4BZdu+4V~5*_NIvD0qSP^MHodwI zR4Kn1Ql768)}h4{Mdryz3>L(J(|>sH+tk~(w0&OXz#{c8I}u(PaHTZebb9Qj`}tG? z(U}oQm*r)ieCkrpj)=3h{vTI)JA?EjF7qJ$-#rye+Hb1=yMQT4>=)%FKItOp_`~0c zJO4$w0h)F|-I6cs|MWla-}ai-cWP5Y4mm5pG}$H?(EoiMY`aLYA+M%N zP{jJ@$^Hx`*qh<<&kw*}jPND9(bo4Y6A5bctB% zrl0?dz?A&QLchF^2I>D3CQnUqIP=JTBmgjV=jkcG47kWAdD`~=@B1TZj~Jx?%jF_z zccdqAnFqlm>B;-8@&8CNNT5JujulBpNjwfZa;YG8a1cu2AMshAEXTT)c-=4LlY*JR zXh@&wsnIz)HR6lBcFoq#!g%_WG3$7A9_qqwx^>?fN@qXhpujvkOGEw`FcF82$yp47 zHB=tp#I|5~l&-^xqgEpIl@>(1A0+m65E z*avu47rs8)9NUQlJ%6+9BhjhAwI}T{Qg*GDG+DQCoq-%ARF(B_6F4n-V4kE)I}7Ww zGRpSO4qVdKK+ILb*wwK;9)to@qly_>ROUpR9|x)%>4+&2-X=LjQNK zPfK1INJt*uH2-&daEdj>bRQ1uqb!oX)CYf)u5o_FGCG+3P{N+QuDwnrPDTznK!|}# z)=RpSOI~HWNj{}4Qae?|B|H>7B%+qc-)sHJj3;_^Ng zPa8DYa6OC_k@;$Ayh@>155ypbptGt*H*8P{$5z6SGc;01kOMaxENeiP2A=@D^BUJN z*)(5{PYotrMl$YG?*5Dw^5Gq@zYf!~a{V#Ylg%gZ46f|G=R4I`U^H+`Vysu|B>nB> zac6b7Ud_H4z`?Bl^e*)y^+_Gcjs~LLcrSG-`Il`Q>VUE-5xCG+lHjQ#EJr-a1O0%& z&7aZ-ARJZFl=i1whsb-DmG^LU5?FU6cq0z$Rbb1=yu8*2lUK1TC_D$v4ww8bL0PX?H9=;0F7^#${RZChJS(;ke-Fl13<} zOq06s^|@mW(wSxUIo^IV^@;}}Uc>s7QmJf%@_)zAK>p7?cS>x!XTJ3R4eQsUp|KIe zM~q7QQUHJf7R;N2ryu_(y1TkkS_AsOXb0*QoArOOtX{>2m`<83&-{M=U$A;+KZUn> z{8tA|9A#9XG$QF>Q%=RL&r3W;VZ4Vh+K?$p7lE=vfml9l%n*pjhT@eGwh0^sg6~2c zXFe%l>$8Ch9R_Z2_Z!D_Cg`D4S-N(BAU&o7JbaDQ$uz+JPDcK%Om-HAjp=3e!GPS% zOMTHGd7mWqTTJXgrCuff%(Hy>84_bOw9$x^{W>+A+*y4wAe8OR0n@j$<;Qxx8wlSQ}C9cfly(~lB1OBVje2OASIvIQ+w`|9-4D-mdgjjqkfaO?5 zE_)D2lkz2Qi6f*-usX7~6PBetFwIo)e>uxQywKiAJ8UC3of>18=z!{nVzCU%OTJ|L z5r{{9^P2j<+j9fBph@se9NIuwA7z(zAn}MJd1w1l2Yf(ay2K0R;c`453?p$yhFoq7 z+l2g*FWDZXVFvVn&p-3H;g#i$umvf1s4w2L#VIHAS&lrX_^uyeze)KLH|t=_`9762 z*{?`hrB111)*)v=h$qWP`ABn9{?E2zI)O4sT2jYScM_y-;QWPUBz*#DQoh0YfB&(N zyrlIG;Qy7xp4Sv9e^wQ77`T$Q)H^}ah43$yArA3EzKA0s9zV3DZz+O2q0*b z6kqvhjFn1yp-`c4q$%-eL^4hOnIO6+9`9wItPjFzm?!^i$Kwsdr>itb@q>XM7+5Zw zZUX`vDEN*|20WI&=M_S)e0D}CJ3B?4$>7RPyB1Q> zSl$|MR)6fU(~`!@>1T>)lu@cnz)lsCMmT#R+upd2Sc@eL=7)Am9dLg^>~P~K0#COk zP2x*>p4Y6MhF9_v;(J~CPK$LhjbM!JUehHoQ7#4d5jDxLERW!61^qf`8I)%2hp;LC zmoo^m4r!+$Z&m$2@*k-rDAB$t-nRCC@$^gD(pKc3#LN1>r^~WoJ%p_PX9EQYebF`; zxDqn{@6KmodD0+I9%+jN$sg;2n<CRsjqQ~3~WTTOo{j=Pe!lqKsU)%?E# zxEUD#5G4KI4$`dO*O36?RcY42a#0keZ})It4D*O5>4m(4eTloW%(n7>i1y*^Z)jI+ zBMAAJj?MaiHYlwI#Nj=`7=wa4rP&CbVr%?g=#Id2%E#ZdX_+Sf{y%FRx_a$o$EpAT N002ovPDHLkV1k#m68iuE literal 0 HcmV?d00001 diff --git a/test_base64.txt b/test_base64.txt new file mode 100644 index 0000000..281bb74 --- /dev/null +++ b/test_base64.txt @@ -0,0 +1 @@ + diff --git a/test_mcp_server.js b/test_mcp_server.js new file mode 100644 index 0000000..1144dcd --- /dev/null +++ b/test_mcp_server.js @@ -0,0 +1,94 @@ +// Test MCP server with image analysis +import { promises as fs } from 'fs'; +import path from 'path'; + +// Path to test image +const IMAGE_PATH = process.argv[2] || 'test.png'; + +// Function to convert image to base64 +async function imageToBase64(imagePath) { + try { + // Read the file + const imageBuffer = await fs.readFile(imagePath); + + // Determine MIME type based on file extension + const fileExt = path.extname(imagePath).toLowerCase(); + let mimeType = 'application/octet-stream'; + + switch (fileExt) { + case '.png': + mimeType = 'image/png'; + break; + case '.jpg': + case '.jpeg': + mimeType = 'image/jpeg'; + break; + case '.webp': + mimeType = 'image/webp'; + break; + default: + mimeType = 'image/png'; // Default to PNG + } + + // Convert to base64 and add the data URI prefix + const base64 = imageBuffer.toString('base64'); + return `data:${mimeType};base64,${base64}`; + } catch (error) { + console.error('Error converting image to base64:', error); + throw error; + } +} + +// Main function to test the MCP server +async function main() { + try { + console.log(`Converting image: ${IMAGE_PATH}`); + + // Check if the image file exists + try { + await fs.access(IMAGE_PATH); + console.log(`Image file exists: ${IMAGE_PATH}`); + } catch (err) { + console.error(`Error: Image file does not exist: ${IMAGE_PATH}`); + return; + } + + // Convert the image to base64 + const base64Image = await imageToBase64(IMAGE_PATH); + console.log('Image converted to base64 successfully.'); + console.log(`Base64 length: ${base64Image.length} characters`); + + // Create the request for analyze_image + const analyzeImageRequest = { + jsonrpc: '2.0', + id: '1', + method: 'mcp/call_tool', + params: { + tool: 'mcp_openrouter_analyze_image', + arguments: { + image_path: base64Image, + question: "What's in this image?", + model: 'qwen/qwen2.5-vl-32b-instruct:free' + } + } + }; + + // Send the request to the MCP server's stdin + console.log('Sending request to MCP server...'); + process.stdout.write(JSON.stringify(analyzeImageRequest) + '\n'); + + // The MCP server will write the response to stdout, which we can read + console.log('Waiting for response...'); + + // In a real application, you would read from the server's stdout stream + // Here we just wait for input to be processed by the MCP server + console.log('Request sent to MCP server. Check the server logs for the response.'); + } catch (error) { + console.error('Error in main function:', error); + } +} + +// Run the main function +main().catch(error => { + console.error("Unhandled error in main:", error); +}); \ No newline at end of file