Add OpenAI Deep Research MCP server
- FastMCP server with deep_research and deep_research_info tools - OpenAI Responses API integration with background polling - Configurable model via DEEP_RESEARCH_MODEL env var - Default: o4-mini-deep-research (faster/cheaper) - Optional FastAPI backend for standalone use - Tested successfully: 80s query, 20 web searches, 4 citations
This commit is contained in:
211
backend/main.py
Normal file
211
backend/main.py
Normal file
@@ -0,0 +1,211 @@
|
||||
"""FastAPI service for Deep Research MCP Server."""
|
||||
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import FASTAPI_HOST, FASTAPI_PORT, MAX_WAIT_MINUTES
|
||||
from .openai_client import get_client
|
||||
|
||||
app = FastAPI(
|
||||
title="Deep Research API",
|
||||
description="OpenAI Deep Research API wrapper",
|
||||
version="0.1.0",
|
||||
)
|
||||
|
||||
# CORS middleware
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
# In-memory task tracking (for status lookups)
|
||||
_tasks: dict[str, dict[str, Any]] = {}
|
||||
|
||||
|
||||
class ResearchRequest(BaseModel):
|
||||
"""Request model for starting research."""
|
||||
query: str
|
||||
system_prompt: str | None = None
|
||||
include_code_analysis: bool = True
|
||||
max_wait_minutes: int = MAX_WAIT_MINUTES
|
||||
|
||||
|
||||
class ResearchResponse(BaseModel):
|
||||
"""Response model for research results."""
|
||||
task_id: str
|
||||
status: str
|
||||
model: str | None = None
|
||||
report_text: str | None = None
|
||||
citations: list[dict[str, Any]] | None = None
|
||||
web_searches: int | None = None
|
||||
code_executions: int | None = None
|
||||
elapsed_time: float | None = None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
"""Health check endpoint."""
|
||||
return {"status": "healthy", "service": "deep-research"}
|
||||
|
||||
|
||||
@app.post("/api/research", response_model=ResearchResponse)
|
||||
async def start_research(request: ResearchRequest) -> ResearchResponse:
|
||||
"""
|
||||
Start a deep research task.
|
||||
|
||||
This initiates a background research task and returns immediately.
|
||||
Use GET /api/research/{task_id} to poll for results.
|
||||
"""
|
||||
client = get_client()
|
||||
task_id = str(uuid.uuid4())
|
||||
start_time = time.time()
|
||||
|
||||
try:
|
||||
# Start the research
|
||||
result = await client.start_research(
|
||||
query=request.query,
|
||||
system_prompt=request.system_prompt,
|
||||
include_code_analysis=request.include_code_analysis,
|
||||
)
|
||||
|
||||
# Store task info
|
||||
_tasks[task_id] = {
|
||||
"response_id": result["id"],
|
||||
"status": result["status"],
|
||||
"model": result["model"],
|
||||
"start_time": start_time,
|
||||
"max_wait_minutes": request.max_wait_minutes,
|
||||
}
|
||||
|
||||
return ResearchResponse(
|
||||
task_id=task_id,
|
||||
status=result["status"],
|
||||
model=result["model"],
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return ResearchResponse(
|
||||
task_id=task_id,
|
||||
status="failed",
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
|
||||
@app.get("/api/research/{task_id}", response_model=ResearchResponse)
|
||||
async def get_research_status(task_id: str) -> ResearchResponse:
|
||||
"""
|
||||
Get the status/results of a research task.
|
||||
|
||||
Poll this endpoint until status is 'completed', 'failed', or 'timeout'.
|
||||
"""
|
||||
if task_id not in _tasks:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
task = _tasks[task_id]
|
||||
client = get_client()
|
||||
|
||||
try:
|
||||
result = await client.poll_research(task["response_id"])
|
||||
elapsed = time.time() - task["start_time"]
|
||||
|
||||
# Check for timeout
|
||||
max_seconds = task["max_wait_minutes"] * 60
|
||||
if result["status"] not in ("completed", "failed", "cancelled") and elapsed >= max_seconds:
|
||||
result["status"] = "timeout"
|
||||
result["error"] = f"Timeout after {task['max_wait_minutes']} minutes"
|
||||
|
||||
# Update stored status
|
||||
task["status"] = result["status"]
|
||||
|
||||
response = ResearchResponse(
|
||||
task_id=task_id,
|
||||
status=result["status"],
|
||||
model=result.get("model"),
|
||||
elapsed_time=elapsed,
|
||||
error=result.get("error"),
|
||||
)
|
||||
|
||||
# Include output if completed
|
||||
if result["status"] == "completed" and "output" in result:
|
||||
output = result["output"]
|
||||
response.report_text = output.get("report_text")
|
||||
response.citations = output.get("citations")
|
||||
response.web_searches = output.get("web_searches")
|
||||
response.code_executions = output.get("code_executions")
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
return ResearchResponse(
|
||||
task_id=task_id,
|
||||
status="failed",
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
|
||||
@app.post("/api/research/{task_id}/wait", response_model=ResearchResponse)
|
||||
async def wait_for_research(task_id: str) -> ResearchResponse:
|
||||
"""
|
||||
Wait for a research task to complete (blocking).
|
||||
|
||||
This will poll until completion or timeout.
|
||||
"""
|
||||
if task_id not in _tasks:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
task = _tasks[task_id]
|
||||
client = get_client()
|
||||
start_time = task["start_time"]
|
||||
|
||||
try:
|
||||
result = await client.wait_for_completion(
|
||||
response_id=task["response_id"],
|
||||
max_wait_minutes=task["max_wait_minutes"],
|
||||
)
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
task["status"] = result["status"]
|
||||
|
||||
response = ResearchResponse(
|
||||
task_id=task_id,
|
||||
status=result["status"],
|
||||
model=result.get("model"),
|
||||
elapsed_time=elapsed,
|
||||
error=result.get("error"),
|
||||
)
|
||||
|
||||
if result["status"] == "completed" and "output" in result:
|
||||
output = result["output"]
|
||||
response.report_text = output.get("report_text")
|
||||
response.citations = output.get("citations")
|
||||
response.web_searches = output.get("web_searches")
|
||||
response.code_executions = output.get("code_executions")
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
return ResearchResponse(
|
||||
task_id=task_id,
|
||||
status="failed",
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
"""Run the FastAPI server."""
|
||||
import uvicorn
|
||||
print(f"Starting Deep Research API on {FASTAPI_HOST}:{FASTAPI_PORT}")
|
||||
uvicorn.run(app, host=FASTAPI_HOST, port=FASTAPI_PORT)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user